3.4. Single compound comparisons#

In this notebook, we compare up to 3 MD simulations of a single compound and optionally also a cheminformatics conformer generator.

This notebook refers to compound 22.

3.4.1. Imports & file inputs#

import matplotlib

%matplotlib inline
# matplotlib.use("Agg")
import matplotlib.pyplot as plt
import matplotlib.tri as tri

# set matplotlib font sizes
SMALL_SIZE = 13
MEDIUM_SIZE = 14
BIGGER_SIZE = 15

plt.rc("font", size=MEDIUM_SIZE)  # controls default text sizes
plt.rc("axes", titlesize=BIGGER_SIZE)  # fontsize of the axes title
plt.rc("axes", labelsize=MEDIUM_SIZE)  # fontsize of the x and y labels
plt.rc("xtick", labelsize=MEDIUM_SIZE)  # fontsize of the tick labels
plt.rc("ytick", labelsize=MEDIUM_SIZE)  # fontsize of the tick labels
plt.rc("legend", fontsize=MEDIUM_SIZE)  # legend fontsize
plt.rc("figure", titlesize=BIGGER_SIZE)  # fontsize of the figure title

DPI = 600

import mdtraj as md
import numpy as np
import scipy.cluster.hierarchy
from scipy.spatial.distance import squareform
import pandas as pd

sys.path.append(os.getcwd())
from src.pyreweight import reweight
from src.noe import compute_NOE_mdtraj, plot_NOE
from src.utils import json_load, dotdict
import src.utils
import src.dihedrals
import src.pyreweight
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
from sklearn.neighbors import NearestNeighbors
from sklearn.decomposition import PCA
# read in stride from config file
stride = int(snakemake.config["stride"])
stride = 1

compound_index = int(snakemake.wildcards.compound_dir)
display(Markdown(f"Analysing Compound {compound_index}"))

compound = json_load(snakemake.input.parm)
multi = compound.multi

if multi is not None:
    display(Markdown("Multiple compounds detected"))
    display(Markdown(print(multi)))
    multi = {v: k for k, v in multi.items()}
    multiple = True
else:
    multiple = False
    display(Markdown("Single compound only (no exp. cis/trans data known)"))

Analysing Compound 22

Single compound only (no exp. cis/trans data known)

# File inputs
methods = {}
repeats = {}
simtime = {}
solvent = {}
boosting = {}
dihe_all = {}
multi_details = {}
for i in range(3):
    # Load MD details
    methods[i] = snakemake.params[f"sample_{i}"]["method"]
    simtime[i] = snakemake.params[f"sample_{i}"]["simtime"]
    repeats[i] = snakemake.params[f"sample_{i}"]["repeats"]
    solvent[i] = snakemake.params[f"sample_{i}"]["solvent"]
    dihe_all[i] = src.utils.pickle_load(snakemake.input[f"red_dihe_{i}"])
    if snakemake.params[f"sample_{i}"]["igamd"] != "nan":
        boost = snakemake.params[f"sample_{i}"]["igamd"]
        if boost == str(3):
            boosting[i] = "boost: dual"
        elif boost == str(2):
            boosting[i] = "boost: dihe"
        elif boost == str(1):
            boosting[i] = "boost: totE"
    else:
        boosting[i] = ""
    if multiple:
        multi_details[i] = src.utils.pickle_load(
            snakemake.input[f"multiple_{i}"]
        )
        multi_plots = 2
    else:
        multi_plots = 1

if snakemake.params[f"sample_{1}"] == snakemake.params[f"sample_{2}"]:
    no_md = 2
else:
    no_md = 3

if multiple:
    cis = []
    trans = []
    for i in range(3):
        cis_temp, trans_temp = src.utils.pickle_load(
            snakemake.input[f"multiple_{i}"]
        )
        cis.append(cis_temp)
        trans.append(trans_temp)

3.4.2. Dihedral PCA comparison#

The following dihedral PCA plots compare the different MD simulations. The middle and left dPCA plots are in the PCA space of the left most plot.

dihe_r = {}  # This stores the reduced dihedrals
# Load pca object of reference MD simulation (0)
pca = src.utils.pickle_load(snakemake.input.dPCA_0)  # PCA(n_components=2)
dihe_r[0] = pca.transform(dihe_all[0])
dihe_r[0].shape
# Now apply the same transformation to second and third
dihe_r[1] = pca.transform(dihe_all[1])
dihe_r[2] = pca.transform(dihe_all[2])

display(
    Markdown(
        f"The two components explain {sum(pca.explained_variance_ratio_):.2%} of the variance"
    )
)

The two components explain 34.60% of the variance

# Reweighting:
weights = {}
weight_data = {}
for i in range(3):
    # The following would read pre-computed weights. But does not work here b/c computed for wrong PCA space!
    # weights[i] = src.utils.pickle_load(snakemake.input[f"dPCA_weights_MC_{i}"])
    if methods[i] != "cMD":
        weight_data[i] = np.loadtxt(snakemake.input[f"weights_{i}"])
        weight_data[i] = weight_data[i][::stride]
        weights[i] = reweight(
            dihe_r[i],
            snakemake.input[f"weights_{i}"],
            "amdweight_MC",
            weight_data[i],
        )
    else:
        weights[i] = reweight(dihe_r[i], None, "noweight")

zs = np.concatenate([weights[0], weights[1], weights[2]], axis=0)
min_, max_ = zs.min(), zs.max()
min_ = 0
max_ = 8
# Plot re-weighted PCA plots with extended labels
fig, axs = plt.subplots(
    1, no_md + 1, sharex="all", sharey="all", figsize=(16, 4)
)
scat = {}
for i in range(no_md):
    scat[i] = axs[i].scatter(
        dihe_r[i][:, 0],
        dihe_r[i][:, 1],
        c=weights[i],
        marker=".",
        cmap="Spectral_r",
        s=0.5,
        vmin=min_,
        vmax=max_,
        rasterized=True,
    )
    axs[i].set_title(
        f"{methods[i]}: {simtime[i]} ns (r# {repeats[i]}).\n {solvent[i]},\n {boosting[i]}"
    )
    axs[no_md].scatter(
        dihe_r[i][:, 0],
        dihe_r[i][:, 1],
        marker=".",
        s=0.5,
        alpha=0.1,
        label=f"{methods[i]}: {simtime[i]} ns (r# {repeats[i]}).\n {solvent[i]}, {boosting[i]}",
        rasterized=True,
    )

lgnd = axs[no_md].legend(bbox_to_anchor=(1.05, 1), loc="upper left")
for handle in lgnd.legendHandles:
    handle.set_sizes([30.0])
    handle.set_alpha(1)

axs[no_md].set_title("Overlay")

colorbar = fig.colorbar(
    scat[0],
    ax=axs,
    label="Energy [kcal/mol]",
    location="left",
    anchor=(1.5, 0),
)
fig.savefig(snakemake.output.pca_dihe, bbox_inches="tight", dpi=600)
../_images/210a1ea8aa678b16_583fbeed838cced5_5405e3b785af9601_0_0_compar_12_0.png
# Publication/report quality figure:
# Plot re-weighted PCA plots
fig, axs = plt.subplots(
    multi_plots,
    no_md,
    sharex="all",
    sharey="all",
    figsize=(12, 4 * multi_plots),
)

scat = {}
panel_labels = ["A", "B", "C"]
panel_labels = panel_labels[0:no_md]
for i, panel in enumerate(panel_labels):
    if multiple:
        # cis
        scat[i] = axs.flatten()[i].scatter(
            dihe_r[i][multi_details[i][0], 0],
            dihe_r[i][multi_details[i][0], 1],
            c=weights[i][multi_details[i][0]],
            marker=".",
            cmap="Spectral_r",
            s=0.5,
            vmin=min_,
            vmax=max_,
            rasterized=True,
        )
        axs.flatten()[i].set_title(
            f"{methods[i]}: {simtime[i]} ns\n {solvent[i]}, cis"
        )
        axs.flatten()[i].text(
            -0.1,
            1.15,
            panel,
            transform=axs.flatten()[i].transAxes,
            fontsize=16,
            fontweight="bold",
            va="top",
            ha="right",
        )
        # trans
        scat[i + 2] = axs.flatten()[i + 2].scatter(
            dihe_r[i][multi_details[i][1], 0],
            dihe_r[i][multi_details[i][1], 1],
            c=weights[i][multi_details[i][1]],
            marker=".",
            cmap="Spectral_r",
            s=0.5,
            vmin=min_,
            vmax=max_,
            rasterized=True,
        )
        axs.flatten()[i + 2].set_title(
            f"{methods[i]}: {simtime[i]} ns\n {solvent[i]}, trans"
        )
        axs.flatten()[i + 2].set_xlabel("PC 1")
    else:
        scat[i] = axs.flatten()[i].scatter(
            dihe_r[i][:, 0],
            dihe_r[i][:, 1],
            c=weights[i],
            marker=".",
            cmap="Spectral_r",
            s=0.5,
            vmin=min_,
            vmax=max_,
            rasterized=True,
        )
        axs.flatten()[i].set_title(
            f"{methods[i]}: {simtime[i]} ns\n {solvent[i]}"
        )
        axs.flatten()[i].set_xlabel("PC 1")
        axs.flatten()[i].text(
            -0.1,
            1.15,
            panel,
            transform=axs.flatten()[i].transAxes,
            fontsize=16,
            fontweight="bold",
            va="top",
            ha="right",
        )
axs.flatten()[0].set_ylabel("PC 2")
if multiple:
    axs.flatten()[2].set_ylabel("PC 2")
    colorbar = fig.colorbar(
        scat[0], ax=axs, label="Energy [kcal/mol]", location="right"
    )
else:
    colorbar = fig.colorbar(
        scat[0], ax=axs, label="Energy [kcal/mol]", location="right"
    )
fig.savefig(
    snakemake.output.report_pca_comparison, bbox_inches="tight", dpi=600
)
../_images/210a1ea8aa678b16_583fbeed838cced5_5405e3b785af9601_0_0_compar_13_0.png

3.4.3. Compare MD clusters#

# Load cluster data
clusters = []
for i in range(no_md):
    try:
        clust_struct = md.load(snakemake.input[f"clusters_{i}"])
    except:
        clust_struct = None
    clusters.append(clust_struct)

# Transform clusters in pca
clusters_dih = []
[
    clusters_dih.append(src.dihedrals.getReducedDihedrals(clus))
    for clus in clusters
]
cluster_pca = []
[cluster_pca.append(pca.transform(clus)) for clus in clusters_dih]
[None, None, None]
# Plot Clusters
fig, ax = plt.subplots()

for i in range(no_md):
    ax.scatter(
        dihe_r[i][:, 0],
        dihe_r[i][:, 1],
        marker=".",
        s=0.5,
        alpha=0.1,
        c="grey",
        rasterized=True,
    )

# Plot clusters
for clus, method in zip(cluster_pca, list(methods.values())):
    ax.scatter(clus[:, 0], clus[:, 1], marker="^", label=method)
    for i, txt in enumerate(np.arange(len(clus[:, 0]))):
        ax.annotate(
            txt,
            (
                clus[i, 0],
                clus[i, 1],
            ),
        )
ax.legend()
ax.set_title("Different clusters on dPCA plot")
fig.savefig(snakemake.output.cluster_pca, dpi=600)
../_images/210a1ea8aa678b16_583fbeed838cced5_5405e3b785af9601_0_0_compar_16_0.png

3.4.4. Shape comparison#

# Shape comparison plots - Load shapes
shape = {}
shape_weights = {}
for i in range(no_md):
    shape[i] = src.utils.pickle_load(snakemake.input[f"shape_{i}"])
    shape_weights[i] = src.utils.pickle_load(
        snakemake.input[f"shape_weights_MC_{i}"]
    )
fig, axs = plt.subplots(1, no_md, sharex="all", sharey="all")
fig.set_size_inches(16 / 3 * no_md, 4)

# create the grid
corners = np.array([[1, 1], [0.5, 0.5], [0, 1]])
triangle = tri.Triangulation(corners[:, 0], corners[:, 1])

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
outline = refiner.refine_triangulation(subdiv=0)

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
trimesh = refiner.refine_triangulation(subdiv=2)

scat = {}
for i, panel in enumerate(panel_labels):
    scat[i] = axs[i].scatter(
        shape[i][:, 0],
        shape[i][:, 1],
        c=shape_weights[i],
        marker=".",
        cmap="Spectral_r",
        s=0.5,
        vmin=min_,
        vmax=max_,
        rasterized=True,
    )
    axs[i].set_title(f"{methods[i]}: {simtime[i]} ns\n {solvent[i]}")
    axs[i].set_xlabel(r"$I_{1}/I_{3}$")
    axs[i].triplot(trimesh, "--", color="grey")
    axs[i].triplot(outline, "k-")
    axs[i].text(0, 1.01, "rod", fontsize=SMALL_SIZE)
    axs[i].text(0.85, 1.01, "sphere", fontsize=SMALL_SIZE)
    axs[i].text(0.44, 0.48, "disk", fontsize=SMALL_SIZE)
    axs[i].scatter(0, 1.05, alpha=0, s=0.1)
    axs[i].scatter(1.05, 1.05, alpha=0, s=0.5)
    axs[i].scatter(0.5, 0.45, alpha=0, s=0.5)
    axs[i].axis("off")
    axs[i].text(
        -0.1,
        1.15,
        panel,
        transform=axs[i].transAxes,
        fontsize=16,
        fontweight="bold",
        va="top",
        ha="right",
    )

axs[0].set_ylabel("$I_{2}/I_{3}$")

colorbar = fig.colorbar(
    scat[0], ax=axs, label="Energy [kcal/mol]", location="right", anchor=(0, 0)
)
# fig.tight_layout()
fig.savefig(
    snakemake.output.shape_comparsion, dpi=600
)  #  bbox_inches='tight',
../_images/210a1ea8aa678b16_583fbeed838cced5_5405e3b785af9601_0_0_compar_20_0.png
clusters = [
    snakemake.input.clusters_0,
    snakemake.input.clusters_1,
    snakemake.input.clusters_2,
]
fig, axs = plt.subplots(1, no_md, figsize=(9, 4))
for i, panel in enumerate(panel_labels):
    pymol_render = src.utils.pymol_image(
        clusters[i], ref=snakemake.input.clusters_0, label=True
    )
    axs[i].set_title(f"{methods[i]}: {simtime[i]} ns\n {solvent[i]}")
    axs[i].axis("off")
    axs[i].text(
        -0.1,
        1.15,
        panel,
        transform=axs[i].transAxes,
        fontsize=16,
        fontweight="bold",
        va="top",
        ha="right",
    )
    axs[i].imshow(pymol_render)
fig.tight_layout()
fig.savefig(snakemake.output.cluster_hbonds, dpi=600)
../_images/210a1ea8aa678b16_583fbeed838cced5_5405e3b785af9601_0_0_compar_21_0.png
fig, axs = plt.subplots(2, no_md, sharex="row", sharey="row")
fig.set_size_inches(12 / 3 * no_md, 6)

# create the grid
corners = np.array([[1, 1], [0.5, 0.5], [0, 1]])
triangle = tri.Triangulation(corners[:, 0], corners[:, 1])

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
outline = refiner.refine_triangulation(subdiv=0)

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
trimesh = refiner.refine_triangulation(subdiv=2)

scat = {}
for i, panel in enumerate(panel_labels):
    scat[i] = axs[0, i].scatter(
        shape[i][:, 0],
        shape[i][:, 1],
        c=shape_weights[i],
        marker=".",
        cmap="Spectral_r",
        s=0.5,
        vmin=min_,
        vmax=max_,
        rasterized=True,
    )
    axs[0, i].set_title(f"{methods[i]}: {simtime[i]} ns\n {solvent[i]}")
    axs[0, i].set_xlabel(r"$I_{1}/I_{3}$")
    axs[0, i].triplot(trimesh, "--", color="grey")
    axs[0, i].triplot(outline, "k-")
    axs[0, i].text(0, 1.01, "rod", fontsize=SMALL_SIZE)
    axs[0, i].text(0.85, 1.01, "sphere", fontsize=SMALL_SIZE)
    axs[0, i].text(0.44, 0.46, "disk", fontsize=SMALL_SIZE)
    axs[0, i].scatter(0, 1.05, alpha=0, s=0.1)
    axs[0, i].scatter(1.05, 1.05, alpha=0, s=0.5)
    axs[0, i].scatter(0.5, 0.45, alpha=0, s=0.5)
    axs[0, i].axis("off")
axs[0, 0].text(
    -0.1,
    1.15,
    "A",
    transform=axs[0, 0].transAxes,
    fontsize=16,
    fontweight="bold",
    va="top",
    ha="right",
)
axs[0, 0].set_ylabel("$I_{2}/I_{3}$")

clusters = [
    snakemake.input.clusters_0,
    snakemake.input.clusters_1,
    snakemake.input.clusters_2,
]
for i, panel in enumerate(panel_labels):
    pymol_render = src.utils.pymol_image(
        clusters[i], ref=snakemake.input.clusters_0, label=True
    )
    #     axs[i].set_title(f"{methods[i]}: {simtime[i]} ns\n {solvent[i]}")
    axs[1, i].axis("off")
    #     axs[i].text(-0.1, 1.15, panel, transform=axs[i].transAxes,fontsize=16, fontweight='bold', va='top', ha='right')
    axs[1, i].imshow(pymol_render)
axs[1, 0].text(
    -0.25,
    1.15,
    "B",
    fontsize=16,
    transform=axs[1, 0].transAxes,
    fontweight="bold",
    va="top",
    ha="right",
)
fig.subplots_adjust(right=0.85)
# get lower left (x0,y0) and upper right (x1,y1) corners
[[x10, y10], [x11, y11]] = axs[0, no_md - 1].get_position().get_points()
pad = 0.01
width = 0.01
cax = fig.add_axes([x11 + pad, y10, width, y11 - y10])
colorbar = fig.colorbar(scat[0], cax=cax, label="Energy [kcal/mol]")
fig.savefig(snakemake.output.cluster_hbonds, bbox_inches="tight", dpi=600)  #
../_images/210a1ea8aa678b16_583fbeed838cced5_5405e3b785af9601_0_0_compar_22_0.png
fig, axs = plt.subplots(2, no_md, sharex="row", sharey="row")
fig.set_size_inches(12 / 3 * no_md, 6)

# create the grid
corners = np.array([[1, 1], [0.5, 0.5], [0, 1]])
triangle = tri.Triangulation(corners[:, 0], corners[:, 1])

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
outline = refiner.refine_triangulation(subdiv=0)

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
trimesh = refiner.refine_triangulation(subdiv=2)

scat = {}
for i, panel in enumerate(panel_labels):
    scat[i] = axs[0, i].scatter(
        shape[i][:, 0],
        shape[i][:, 1],
        c=shape_weights[i],
        marker=".",
        cmap="Spectral_r",
        s=0.5,
        vmin=min_,
        vmax=max_,
        rasterized=True,
    )
    axs[0, i].set_title(f"{methods[i]}: {simtime[i]} ns\n {solvent[i]}")
    axs[0, i].set_xlabel(r"$I_{1}/I_{3}$")
    axs[0, i].triplot(trimesh, "--", color="grey")
    axs[0, i].triplot(outline, "k-")
    axs[0, i].text(0, 1.01, "rod", fontsize=SMALL_SIZE)
    axs[0, i].text(0.85, 1.01, "sphere", fontsize=SMALL_SIZE)
    axs[0, i].text(0.44, 0.46, "disk", fontsize=SMALL_SIZE)
    axs[0, i].scatter(0, 1.05, alpha=0, s=0.1)
    axs[0, i].scatter(1.05, 1.05, alpha=0, s=0.5)
    axs[0, i].scatter(0.5, 0.45, alpha=0, s=0.5)
    axs[0, i].axis("off")
axs[0, 0].text(
    -0.1,
    1.15,
    "A",
    transform=axs[0, 0].transAxes,
    fontsize=16,
    fontweight="bold",
    va="top",
    ha="right",
)
axs[0, 0].set_ylabel("$I_{2}/I_{3}$")

clusters = [
    snakemake.input.clusters_0,
    snakemake.input.clusters_1,
    snakemake.input.clusters_2,
]
for i, panel in enumerate(panel_labels):
    pymol_render = src.utils.pymol_image(
        clusters[i], ref=snakemake.input.clusters_0, label=False
    )
    #     axs[i].set_title(f"{methods[i]}: {simtime[i]} ns\n {solvent[i]}")
    axs[1, i].axis("off")
    #     axs[i].text(-0.1, 1.15, panel, transform=axs[i].transAxes,fontsize=16, fontweight='bold', va='top', ha='right')
    axs[1, i].imshow(pymol_render)
axs[1, 0].text(
    -0.25,
    1.15,
    "B",
    fontsize=16,
    transform=axs[1, 0].transAxes,
    fontweight="bold",
    va="top",
    ha="right",
)
fig.subplots_adjust(right=0.85)
# get lower left (x0,y0) and upper right (x1,y1) corners
[[x10, y10], [x11, y11]] = axs[0, no_md - 1].get_position().get_points()
pad = 0.01
width = 0.01
cax = fig.add_axes([x11 + pad, y10, width, y11 - y10])
colorbar = fig.colorbar(scat[0], cax=cax, label="Energy [kcal/mol]")
fig.savefig(snakemake.output.cluster_hbonds_nolabel, bbox_inches="tight", dpi=600)  #
../_images/210a1ea8aa678b16_583fbeed838cced5_5405e3b785af9601_0_0_compar_23_0.png

3.4.5. Cheminformatics conformer generators (optional)#

snakemake.wildcards.confgens
'0_0'
# Load conformer generator structures
if snakemake.wildcards.confgens != "0_0":
    confgen_number = int(len(snakemake.wildcards.confgens.split("_")) / 2)
    confgens = snakemake.wildcards.confgens.split("_")
    confgen_name = []
    for idx, (j, k) in enumerate(zip(confgens[0::2], confgens[1::2])):
        confgen_name.append(f"{j}:{k}")
    chem_info_t = [
        md.load(snakemake.input[f"cheminfoconfs{i}"])
        for i in range(confgen_number)
    ]
    print(chem_info_t)

    chem_info_dihe_r = {}
    chem_info_shapes = {}
    for i, chem_t in enumerate(chem_info_t):
        chem_info_dihedrals = src.dihedrals.getReducedDihedrals(chem_t)
        chem_info_dihe_r[i] = pca.transform(chem_info_dihedrals)

        # compute shape
        inertia_tensor = md.compute_inertia_tensor(chem_t)
        principal_moments = np.linalg.eigvalsh(inertia_tensor)

        # Compute normalized principal moments of inertia
        npr1 = principal_moments[:, 0] / principal_moments[:, 2]
        npr2 = principal_moments[:, 1] / principal_moments[:, 2]
        chem_info_shapes[i] = np.stack((npr1, npr2), axis=1)
else:
    confgen_number = 1
if snakemake.wildcards.confgens != "0_0":
    replacement_dict = {'omega:basic': "OMEGA Macrocycle", 'rdkit:ETKDGv3mmff': "RDKit ETKDG"}
    for index, element in enumerate(confgen_name):
        if element in replacement_dict:
            confgen_name[index] = replacement_dict[element]
# Compare all cheminformatics conformer generators to md reference
all_panel_labels = [
    "A",
    "B",
    "C",
    "D",
    "E",
    "F",
    "G",
    "H",
    "I",
    "J",
    "K",
    "L",
    "M",
    "N",
    "O",
    "P",
    "Q",
    "R",
    "S",
]
n_row, n_col, figsize = src.utils.determine_no_plots(confgen_number)
fig, axs = plt.subplots(
    n_row, n_col, sharex="all", sharey="all", figsize=figsize
)
if snakemake.wildcards.confgens != "0_0":
    scat = {}
    ref_label = f"{methods[0]}: {simtime[0]} ns\n {solvent[0]}"
    for i in range(confgen_number):
        scat[i] = axs.flatten()[i].scatter(
            dihe_r[0][:, 0],
            dihe_r[0][:, 1],
            c=weights[0],
            cmap="Spectral_r",
            marker=".",
            s=0.5,
            vmin=0,
            vmax=8,
            rasterized=True,
            label=ref_label,
        )
        scat[i] = axs.flatten()[i].scatter(
            chem_info_dihe_r[i][:, 0],
            chem_info_dihe_r[i][:, 1],
            marker="s",
            s=6,
            color="black",
            label=confgen_name[i],
        )  # , c=weights[i], marker='.', cmap='Spectral_r', s=0.5, vmin=min_, vmax=max_)
        axs.flatten()[i].set_title(confgen_name[i])
        axs[i].set_xlabel("PC 1")
        axs.flatten()[i].legend(
            bbox_to_anchor=(0, -0.4), loc="lower left", borderaxespad=0
        )
        axs.flatten()[i].text(
            -0.1,
            1.15,
            all_panel_labels[i],
            transform=axs[i].transAxes,
            fontsize=16,
            fontweight="bold",
            va="top",
            ha="right",
        )
    axs[0].set_ylabel("PC 2")
    fig.tight_layout()
fig.savefig(snakemake.output.all_cheminfo_comp_pca, dpi=600)
../_images/210a1ea8aa678b16_583fbeed838cced5_5405e3b785af9601_0_0_compar_28_0.png
# Plot shapes
n_row, n_col, figsize = src.utils.determine_no_plots(confgen_number, 4, 3)
fig, axs = plt.subplots(
    n_row, n_col, sharex="all", sharey="all", figsize=figsize
)

if snakemake.wildcards.confgens != "0_0":
    # create the grid
    corners = np.array([[1, 1], [0.5, 0.5], [0, 1]])
    triangle = tri.Triangulation(corners[:, 0], corners[:, 1])

    # creating the outline
    refiner = tri.UniformTriRefiner(triangle)
    outline = refiner.refine_triangulation(subdiv=0)

    # creating the outline
    refiner = tri.UniformTriRefiner(triangle)
    trimesh = refiner.refine_triangulation(subdiv=2)

    scat = {}
    for i in range(confgen_number):
        scat[i] = axs.flatten()[i].scatter(
            shape[0][:, 0],
            shape[0][:, 1],
            c=shape_weights[0],
            marker=".",
            cmap="Spectral_r",
            s=0.5,
            vmin=0,
            vmax=8,
            rasterized=True,
            label=ref_label,
        )
        axs.flatten()[i].scatter(
            chem_info_shapes[i][:, 0],
            chem_info_shapes[i][:, 1],
            marker=".",
            c="black",
            s=4,
            label=confgen_name[i],
        )
        axs.flatten()[i].set_xlabel(r"$I_{1}/I_{3}$")
        axs.flatten()[i].triplot(trimesh, "--", color="grey")
        axs.flatten()[i].triplot(outline, "k-")
        axs.flatten()[i].text(0, 1.01, "rod", fontsize=SMALL_SIZE)
        axs.flatten()[i].text(0.85, 1.01, "sphere", fontsize=SMALL_SIZE)
        axs.flatten()[i].text(0.44, 0.45, "disk", fontsize=SMALL_SIZE)
        axs.flatten()[i].scatter(0, 1.05, alpha=0, s=0.1)
        axs.flatten()[i].scatter(1.05, 1.05, alpha=0, s=0.5)
        axs.flatten()[i].scatter(0.5, 0.45, alpha=0, s=0.5)
        axs.flatten()[i].axis("off")
        axs.flatten()[i].set_title(confgen_name[i])
        axs.flatten()[i].legend(
            bbox_to_anchor=(0, -0.4), loc="lower left", borderaxespad=0
        )
        axs.flatten()[i].text(
            -0.1,
            1.15,
            all_panel_labels[i],
            transform=axs[i].transAxes,
            fontsize=16,
            fontweight="bold",
            va="top",
            ha="right",
        )
    axs.flatten()[0].set_ylabel("$I_{2}/I_{3}$")

    colorbar = fig.colorbar(
        scat[0],
        ax=axs,
        label=" Energy [kcal/mol]",
        location="left",
        anchor=(8.5, 0),
    )
    # fig.tight_layout()
fig.savefig(snakemake.output.all_cheminfo_comp_shape, dpi=600)
../_images/210a1ea8aa678b16_583fbeed838cced5_5405e3b785af9601_0_0_compar_29_0.png
fig, axs = plt.subplots(1, 2, figsize=(12, 4))
if snakemake.wildcards.confgens != "0_0":
    colors = [
        "black",
        "red",
    ]
    axs[0].scatter(
        dihe_r[0][:, 0],
        dihe_r[0][:, 1],
        c=weights[0],
        cmap="Spectral_r",
        marker=".",
        s=0.5,
        vmin=0,
        vmax=8,
        rasterized=True,
    )
    for i in range(confgen_number):
        axs[0].scatter(
            chem_info_dihe_r[i][:, 0],
            chem_info_dihe_r[i][:, 1],
            c=colors[i],
            marker="s",
            s=6,
            label=confgen_name[i],  # capitalize()
        )  # markers
    # bbox_to_anchor=(2.05,0), loc='upper left')

    axs[0].set_xlabel("PC1")
    axs[0].set_ylabel("PC2")
    axs[0].text(
        -0.1,
        1.15,
        all_panel_labels[0],
        transform=axs[0].transAxes,
        fontsize=16,
        fontweight="bold",
        va="top",
        ha="right",
    )

    scat = axs[1].scatter(
        shape[0][:, 0],
        shape[0][:, 1],
        c=shape_weights[0],
        marker=".",
        cmap="Spectral_r",
        s=0.5,
        vmin=0,
        vmax=8,
        rasterized=True,
    )

    for i in range(confgen_number):
        axs[1].scatter(
            chem_info_shapes[i][:, 0],
            chem_info_shapes[i][:, 1],
            c=colors[i],
            marker=".",
            s=4,
        )
    # axs[1].set_xlabel(r'$I_{1}/I_{3}$')
    axs[1].triplot(trimesh, "--", color="grey")
    axs[1].triplot(outline, "k-")
    axs[1].text(0, 1.01, "rod", fontsize=SMALL_SIZE)
    axs[1].text(0.85, 1.01, "sphere", fontsize=SMALL_SIZE)
    axs[1].text(0.44, 0.45, "disk", fontsize=SMALL_SIZE)
    axs[1].scatter(0, 1.05, alpha=0, s=0.1)
    axs[1].scatter(1.05, 1.05, alpha=0, s=0.5)
    axs[1].scatter(0.5, 0.45, alpha=0, s=0.5)
    axs[1].text(
        -0.1,
        1.15,
        all_panel_labels[1],
        transform=axs[1].transAxes,
        fontsize=16,
        fontweight="bold",
        va="top",
        ha="right",
    )
    axs[1].axis("off")
    # axs[1].set_title(snakemake.wildcards[f"confgen{fig_to_plot+1}"])

    # axs[1].set_ylabel('$I_{2}/I_{3}$')
    axs[0].legend(
        mode="expand",
        ncol=2,
        loc="lower left",
        bbox_to_anchor=(-0.1, -0.3, 1.5, 0.102),
        borderaxespad=0,
    )
    colorbar = fig.colorbar(
        scat, ax=axs, label="Energy [kcal/mol]", location="right"
    )
fig.savefig(snakemake.output.single_comp_plot, bbox_inches="tight", dpi=600)
../_images/210a1ea8aa678b16_583fbeed838cced5_5405e3b785af9601_0_0_compar_30_0.png