2.38. Analysis Notebook#

A copy of this notebook is run to analyse the molecular dynamics simulations. The type of MD simulation is specified in the Snakemake rule as a parameter, such that it is accessible via: snakemake.params.method.

There are various additional analysis steps, that are included in the notebook, but are not part of the paper. To turn these on, set the beta_run parameter to True.

There are also some commented out lines in the notebook. These are mainly for the purpose of debugging. Some of them are for interactively exploring the 3d structure of the system. These don’t work as part of the automated snakemake workflow, but can be enabled when running a notebook interactively.

#Check if we should use shortened trajectories for analysis.
if snakemake.config["shortened"]:
    print("Using shortened trajectories and dihedrals. This only works if these were created previously!")
    if not (os.path.exists(snakemake.params.traj_short) 
            and os.path.exists(snakemake.params.dihedrals_short)
            and os.path.exists(snakemake.params.dPCA_weights_MC_short)
            and os.path.exists(snakemake.params.weights_short)
           ):
        raise FileNotFoundError("Shortened trajectories and dihedrals files do not exist, but config value is set to use shortened files! Switch off the use of shortenend files and first analyse this simulation using the full trajectory!")
    else:
        use_shortened = True
else:
    use_shortened = False
# Imports
import matplotlib
import mdtraj as md
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import matplotlib.image as mpimg

# set matplotlib font sizes
SMALL_SIZE = 9
MEDIUM_SIZE = 11
BIGGER_SIZE = 13

plt.rc('font', size=MEDIUM_SIZE)          # controls default text sizes
plt.rc('axes', titlesize=BIGGER_SIZE)     # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE)    # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE)    # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE)    # fontsize of the tick labels
plt.rc('legend', fontsize=MEDIUM_SIZE)    # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure title

DPI = 600

import scipy.cluster.hierarchy
from scipy.spatial.distance import squareform
import pandas as pd

sys.path.append(os.getcwd())
import src.dihedrals
import src.pca
import src.noe
import src.Ring_Analysis
import src.stats
from src.pyreweight import reweight
from src.utils import json_load, pickle_dump
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
from sklearn.neighbors import NearestNeighbors
from sklearn.decomposition import PCA
import nglview as nv
from rdkit import Chem
from rdkit.Chem.Draw import IPythonConsole
import py_rdl
import seaborn as sns

IPythonConsole.molSize = (900, 300)  # (450, 150)
IPythonConsole.drawOptions.addStereoAnnotation = True
IPythonConsole.drawOptions.annotationFontScale = 1.5
import tempfile
import io
import svgutils.transform as sg
import svgutils.compose as sc
import scipy.stats as stats
from IPython.display import display, Markdown
# Can set a stride to make prelim. analysis faster. for production, use 1 (use all MD frames)
stride = int(snakemake.config["stride"])
print(f"Using stride {stride} to analyse MD simulations.")
# Perform additional analysis steps (e.g. compute structural digits)
beta_run = False

# Analysing compound
compound_index = int(snakemake.wildcards.compound_dir)
simtime = float(snakemake.wildcards.time)

# Storage for overview figure
final_figure_axs = []
Using stride 1 to analyse MD simulations.

2.38.1. Compound details#

display(Markdown(f"This notebook refers to compound {compound_index}."))

compound = json_load(snakemake.input.parm)
multi = compound.multi
if multi:
    display(Markdown(
        "According to the literature reference, there are two distinct structures in solution."
    ))
else:
    display(Markdown(
        "According to the literature reference, there is only one distinct structure in solution."
    ))
display(Markdown(f"""The sequence of the compound is **{compound.sequence}**. \n
A 2d structure of the compound is shown below."""))

This notebook refers to compound 65.

According to the literature reference, there is only one distinct structure in solution.

The sequence of the compound is H(DPR)(DVA)CIP(DPR)E(DLY)VC(DGL).

A 2d structure of the compound is shown below.

2.38.2. Simulation details#

# TODO: change notebook that it supports use of a shortened trajectory file
# only load protein topology
topo = md.load_frame(snakemake.input.traj, 0, top=snakemake.input.top)
protein = topo.topology.select("protein or resname ASH")
display(Markdown(f"The following atom numbers are part of the protein: {protein}"))

The following atom numbers are part of the protein: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182]

# Stereo check 1-frame trajectory to tmp-pdb file
t_stereo_check = topo.restrict_atoms(topo.topology.select("protein or resname ASH"))
tf = tempfile.NamedTemporaryFile(delete=False)
# tf.name
t_stereo_check.save_pdb(tf.name)

# Get reference mol
mol_ref = Chem.MolFromMol2File(
    snakemake.input.ref_mol,
    removeHs=False,
)

# Get 1st frame pdb from tempfile
post_eq_mol = Chem.MolFromPDBFile(
    tf.name,
    removeHs=False,
    sanitize=False,
)

# could compare smiles to automate the stereo-check. Problem: mol2 reference file has wrong bond orders
# (amber does not write those correctly). The ref-pdb file cannot be read b/c geometry is not optimized.
# This leads to funky valences in rdkit. The post-eq pdb file reads fine but then charges etc. dont match
# with the reference (b/c of wrong bond orders). But can manually check that all stereocentres are correct (below)
Chem.CanonSmiles(Chem.MolToSmiles(post_eq_mol)) == Chem.CanonSmiles(
    Chem.MolToSmiles(mol_ref)
)
display(Markdown("""Following we compare an annotated 2d structure of the compound's starting topology, with the 
                 topology post equilibration"""))

Following we compare an annotated 2d structure of the compound's starting topology, with the topology post equilibration

post_eq_mol.RemoveAllConformers()
display(Markdown("2d structure of the compound post equilibration:"))
post_eq_mol

2d structure of the compound post equilibration:

../_images/45750abf2112f0e2_cMD_processed_12_1.png
mol_ref.RemoveAllConformers()
display(Markdown("2d structure of the compound reference topology:"))
mol_ref

2d structure of the compound reference topology:

../_images/45750abf2112f0e2_cMD_processed_13_1.png
# load trajectory
display(Markdown("Now we load the MD trajectory."))
if not use_shortened:
    t = md.load(
        snakemake.input.traj, top=snakemake.input.top, atom_indices=protein, stride=stride
    )  # added strideint for GaMD 2k
    print(t)
    # Remove solvent from trajectory
    t = t.restrict_atoms(t.topology.select("protein or resname ASH"))
    t = t.superpose(t, 0)

    # for GaMD, skip equlibration...
    if snakemake.params.method == "GaMD":
        weight_lengths = np.loadtxt(snakemake.input.weights)
        weight_lengths = int(len(weight_lengths))
        frames_start = int(t.n_frames - weight_lengths)
        t = t[int(frames_start / stride) :]  # added 13000 instead of 26000 for 2k
    else:
        frames_start = 0
    print(t)
else:
    stride = 1  # set stride to 1 for shortened files!
    t = md.load(
        snakemake.params.traj_short, top=snakemake.input.top, atom_indices=protein, stride=1
    )  # added strideint for GaMD 2k
    t = t.restrict_atoms(t.topology.select("protein or resname ASH"))
    t = t.superpose(t, 0)

Now we load the MD trajectory.

<mdtraj.Trajectory with 500000 frames, 183 atoms, 12 residues, and unitcells>
<mdtraj.Trajectory with 500000 frames, 183 atoms, 12 residues, and unitcells>

The simulation type is cMD, 2000 ns. The simulation was performed in H2O.

There are a total of 500000 frames available to analyse.

# Create a short trajectory & weights if working with the full trajectory
if not use_shortened:
    # determine stride to get 10k frames:
    stride_short = int(t.n_frames / 10000)
    if stride_short == 0:
        stride_short = 1

    # save short trajectory to file
    t[::stride_short].save_netcdf(snakemake.params.traj_short)
    
    # load weights for GaMD
    if snakemake.params.method != "cMD":
        weight_data = np.loadtxt(snakemake.input.weights)
        weight_data = weight_data[::stride]
        #create shortened weights
        np.savetxt(snakemake.params.weights_short, weight_data[::stride_short])
else:
    # load shortened weights for GaMD
    if snakemake.params.method != "cMD":
        weight_data = np.loadtxt(snakemake.params.weights_short)

# this determines a cutoff for when we consider cis/trans conformers separately.
# only relevant if 2 sets of NOE values present.
# t.n_frames / 1000 -> 0.1% of frames need to be cis/trans to consider both forms.
CIS_TRANS_CUTOFF = int(t.n_frames / 1000)

However, for some of the analysis steps below, only 1% of these frames have been used to ensure better rendering in the browser.

Loading BokehJS ...

2.38.3. Convergence of the simulation#

2.38.3.1. RMSD#

To check for convergence of the simulation, we can look at the root mean squared deviation of the atomic positions over the course of the simulation.

# compute rmsd for different atom types
rmsds = md.rmsd(t, t, 0) * 10
bo = topo.topology.select("protein and (backbone and name O)")
ca = topo.topology.select("name CA")
rmsds_ca = md.rmsd(t, t, 0, atom_indices=ca) * 10  # Convert to Angstrom!
rmsds_bo = md.rmsd(t, t, 0, atom_indices=bo) * 10  # Convert to Angstrom!

rmsds = rmsds[::100]
rmsds_ca = rmsds_ca[::100]
rmsds_bo = rmsds_bo[::100]

# Create x data (simulation time)
x = [x / len(rmsds_ca) * simtime for x in range(0, len(rmsds_ca))]

# Make plot
fig = figure(
    plot_width=600,
    plot_height=400,
    title="RMSD of different atom types",
    x_axis_label="Simulation time in ns",
    y_axis_label="RMSD in angstrom, relative to first frame",
    sizing_mode="stretch_width",
    toolbar_location=None,
)
fig.line(
    x,
    rmsds,
    line_width=2,
    line_alpha=0.6,
    legend_label="all atoms",
    color="black",
    muted_alpha=0.1,
)
fig.line(
    x,
    rmsds_ca,
    line_width=2,
    line_alpha=0.6,
    legend_label="C-alpha atoms",
    color="blue",
    muted_alpha=0.1,
)
fig.line(
    x,
    rmsds_bo,
    line_width=2,
    line_alpha=0.6,
    legend_label="backbone O atoms",
    color="orange",
    muted_alpha=0.1,
)
fig.legend.click_policy = "mute"  #'hide'
show(fig)
# TODO: save rmsds as png, instead of manual screenshot https://docs.bokeh.org/en/latest/docs/user_guide/export.html

2.38.3.2. Dihedral angles#

if multi is not None:
    multi = {v: k for k, v in multi.items()}
    multiple = True
    distinction = compound.distinction
    print("Multiple compounds detected")
else:
    multiple = False
    pickle_dump(snakemake.output.multiple, multiple)
if multiple:  # if Compound.cistrans:
    ca_c = t.top.select(f"resid {distinction[0]} and name CA C")
    n_ca_next = t.top.select(f"resid {distinction[1]} and name N CA")
    omega = np.append(ca_c, n_ca_next)
    t_omega_rad = md.compute_dihedrals(t, [omega])
    t_omega_deg = np.abs(np.degrees(t_omega_rad))
    plt.plot(t_omega_deg)
    plt.hlines(90, 0, t.n_frames, color="red")
    plt.xlabel("Frames")
    plt.ylabel("Omega 0-1 [°]")
    plt.title(f"Dihedral angle over time. Compound {compound_index}")
    cis = np.where(t_omega_deg <= 90)[0]
    trans = np.where(t_omega_deg > 90)[0]
    pickle_dump(snakemake.output.multiple, (cis, trans))
    # t[trans]
# TODO: save dihedrals as png
resnames = []
for i in range(0, t.n_residues):
    resnames.append(t.topology.residue(i))

*_, omega = src.dihedrals.getDihedrals(t)
omega_deg = np.abs(np.degrees(omega))

omega_deg = omega_deg[::100]

simtime = float(snakemake.wildcards.time)

colors = src.utils.color_cycle()

# Create x data (simulation time)
x = [x / len(omega_deg) * simtime for x in range(0, len(omega_deg))]

# Make plot
fig = figure(
    plot_width=600,
    plot_height=400,
    title="Omega dihedral angles over time",
    x_axis_label="Simulation time in ns",
    y_axis_label="Dihedral angle in ˚",
    sizing_mode="stretch_width",
    toolbar_location=None,
)

for res, i, col in zip(resnames, range(len(resnames)), colors):
    fig.line(
        x,
        omega_deg[:, i],
        line_width=2,
        line_alpha=0.6,
        legend_label=str(res),
        color=col,
        muted_alpha=0.1,
    )

fig.legend.click_policy = "mute"  #'hide'
show(fig)
# Compute dihedral angles [Phi] [Psi] [Omega]
phi, psi, omega = src.dihedrals.getDihedrals(t)
if beta_run:
    # Print mean of dihedral angles [Phi] [Psi] [Omega]
    print(
        np.degrees(src.dihedrals.angle_mean(phi)),
        np.degrees(src.dihedrals.angle_mean(psi)),
        np.degrees(src.dihedrals.angle_mean(omega)),
    )
# Plot ramachandran plot for each amino acid
if beta_run:
    fig, axs = plt.subplots(int(np.ceil(len(phi.T) / 5)), 5, sharex="all", sharey="all")
    fig.set_size_inches(16, 4)
    motives = []
    i = 0
    for phi_i, psi_i in zip(np.degrees(phi.T), np.degrees(psi.T)):
        weights_phi_psi = reweight(
            np.column_stack((phi_i, psi_i)),
            None,
            "amdweight_MC",
            weight_data,
        )
        axs.flatten()[i].scatter(
            phi_i, psi_i, s=0.5, c=weights_phi_psi, vmin=0, vmax=8, cmap="Spectral_r"
        )
        axs.flatten()[i].set_title(i)
        motives.append(src.dihedrals.miao_ramachandran(phi_i, psi_i))
        i += 1
    fig.show()
if beta_run:
    # compute most common motives
    combined_motives = np.column_stack((motives))
    combined_motives = ["".join(test) for test in combined_motives]
    from collections import Counter

    c = Counter(combined_motives)
    motive_percentage = [
        (i, c[i] / len(combined_motives) * 100.0) for i, count in c.most_common()
    ]
    # 10 most common motives and percentage of frames
    print(motive_percentage[:10])
if beta_run:
    # Get indicies of most common motives
    combined_motives = np.array(combined_motives)
    idxs = []
    values = [i[0] for i in c.most_common(10)]
    for i, v in enumerate(values):
        idxs.append(np.where(combined_motives == v)[0])

2.38.4. Dimensionality Reductions#

The simulation trajectories contain the positions of all atoms. This high dimensional data (3*N_atoms) is too complicated to analyse by itself. To get a feeling of the potential energy landscape we need to apply some kind of dimensionality reduction. Here, we apply the PCA (Principal Component Analysis) method.

2.38.4.1. Cartesian PCA#

Details about cartesian PCA

c_pca, reduced_cartesian = src.pca.make_PCA(t, "cartesian")

# reweighting:
if snakemake.params.method == "cMD":
    c_weights = reweight(reduced_cartesian, None, "noweight")
else:
    c_weights = reweight(
        reduced_cartesian, None, "amdweight_MC", weight_data
    )

if multiple:
    fig, axs = plt.subplots(1, 2, sharex="all", sharey="all", figsize=(6.7323, 3.2677))
    axs[0] = src.pca.plot_PCA(
        reduced_cartesian,
        "cartesian",
        compound_index,
        c_weights,
        "Energy [kcal/mol]",
        fig,
        axs[0],
        explained_variance=c_pca.explained_variance_ratio_[:2],
    )
    axs[1] = src.pca.plot_PCA_citra(
        reduced_cartesian[cis],
        reduced_cartesian[trans],
        "cartesian",
        compound_index,
        [multi["cis"] + " (cis)", multi["trans"] + " (trans)"],
        fig,
        axs[1],
    )

else:
    fig, ax = plt.subplots(figsize=(3.2677, 3.2677))
    ax = src.pca.plot_PCA(
        reduced_cartesian,
        "cartesian",
        compound_index,
        c_weights,
        "Energy [kcal/mol]",
        fig,
        ax,
        explained_variance=c_pca.explained_variance_ratio_[:2],
    )
../_images/45750abf2112f0e2_cMD_processed_33_0.png

2.38.4.2. Pairwise distances PCA#

pd_pca, reduced_pd = src.pca.make_PCA(t, "pairwise_N_O")

# reweighting:
if snakemake.params.method == "cMD":
    p_weights = reweight(reduced_pd, None, "noweight")
else:
    p_weights = reweight(
        reduced_pd, None, "amdweight_MC", weight_data
    )

if multiple:
    fig, axs = plt.subplots(1, 2, sharex="all", sharey="all", figsize=(6.7323, 3.2677))
    axs[0] = src.pca.plot_PCA(
        reduced_pd,
        "pairwise",
        compound_index,
        p_weights,
        "Energy [kcal/mol]",
        fig,
        axs[0],
        explained_variance=pd_pca.explained_variance_ratio_[:2],
    )
    axs[1] = src.pca.plot_PCA_citra(
        reduced_pd[cis],
        reduced_pd[trans],
        "pairwise",
        compound_index,
        [multi["cis"] + " (cis)", multi["trans"] + " (trans)"],
        fig,
        axs[1],
    )
else:
    fig, ax = plt.subplots(figsize=(3.2677, 3.2677))
    ax = src.pca.plot_PCA(
        reduced_pd,
        "pairwise",
        compound_index,
        p_weights,
        "Energy [kcal/mol]",
        fig,
        ax,
        explained_variance=pd_pca.explained_variance_ratio_[:2],
    )
../_images/45750abf2112f0e2_cMD_processed_35_0.png

2.38.4.3. Dihedral PCA#

pca_d, reduced_dihedrals = src.pca.make_PCA(t, "dihedral")
reduced_dihedrals_full = src.dihedrals.getReducedDihedrals(t)

# save pca object & reduced dihedrals
pickle_dump(snakemake.output.dPCA, pca_d)
pickle_dump(snakemake.output.dihedrals, reduced_dihedrals_full)
if not use_shortened:
    pickle_dump(snakemake.params.dihedrals_short, reduced_dihedrals_full[::stride_short])

# reweighting:
if snakemake.params.method == "cMD":
    d_weights = reweight(reduced_dihedrals, None, "noweight")
else:
    d_weights = reweight(
        reduced_dihedrals, None, "amdweight_MC", weight_data
    )
if multiple:
    fig, axs = plt.subplots(1, 2, sharex="all", sharey="all", figsize=(6.7323, 3.2677))
    axs[0] = src.pca.plot_PCA(
        reduced_dihedrals,
        "dihedral",
        compound_index,
        d_weights,
        "Energy [kcal/mol]",
        fig,
        axs[0],
        explained_variance=pca_d.explained_variance_ratio_[:2],
    )
    axs[1] = src.pca.plot_PCA_citra(
        reduced_dihedrals[cis],
        reduced_dihedrals[trans],
        "dihedral",
        compound_index,
        [multi["cis"] + " (cis)", multi["trans"] + " (trans)"],
        fig,
        axs[1],
    )
    fig.savefig(snakemake.output.pca_dihe, dpi=DPI)
else:
    fig, ax = plt.subplots(figsize=(3.2677, 3.2677))
    ax = src.pca.plot_PCA(
        reduced_dihedrals,
        "dihedral",
        compound_index,
        d_weights,
        "Energy [kcal/mol]",
        fig,
        ax,
        explained_variance=pca_d.explained_variance_ratio_[:2],
    )
    fig.tight_layout()
    fig.savefig(snakemake.output.pca_dihe, dpi=DPI)
final_figure_axs.append(sg.from_mpl(fig, savefig_kw={"dpi": DPI}))
pickle_dump(snakemake.output.dPCA_weights_MC, d_weights)
if not use_shortened:
    pickle_dump(snakemake.params.dPCA_weights_MC_short, d_weights[::stride_short])
../_images/45750abf2112f0e2_cMD_processed_37_0.png
if beta_run:
    # Plot structural digits on top of dPCA
    fig, axs = plt.subplots(2, 5, sharex="all", sharey="all")
    fig.set_size_inches(12, 8)
    for i in range(10):
        axs.flatten()[i] = src.pca.plot_PCA(
            reduced_dihedrals,
            "dihedral",
            compound_index,
            d_weights,
            "Energy [kcal/mol]",
            fig,
            axs.flatten()[i],
            cbar_plot="nocbar",
            explained_variance=pca_d.explained_variance_ratio_[:2],
        )
        axs.flatten()[i].scatter(
            reduced_dihedrals[idxs[i]][:, 0],
            reduced_dihedrals[idxs[i]][:, 1],
            label=values[i],
            s=0.2,
            marker=".",
            color="black",
        )
        axs.flatten()[i].set_title(f"{values[i]}: {motive_percentage[i][1]:.2f}%")
    fig.tight_layout()

2.38.4.4. TSNE#

# TSNE dimensionality reduction
# TSNE
if not use_shortened:
    plot_stride = 100
else:
    plot_stride = 1
cluster_stride = plot_stride  # 125 previously
dihe = src.dihedrals.getReducedDihedrals(t)
tsne = TSNE(n_components=2, verbose=0, perplexity=50, n_iter=2000, random_state=42)
tsne_results = tsne.fit_transform(dihe[::cluster_stride, :])  # 250
plt.scatter(tsne_results[:, 0], tsne_results[:, 1])
plt.xlabel("t-SNE dimension 1")
plt.ylabel("t-SNE dimension 2")
plt.show()
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/sklearn/manifold/_t_sne.py:783: FutureWarning: The default initialization in TSNE will change from 'random' to 'pca' in 1.2.
  FutureWarning,
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/sklearn/manifold/_t_sne.py:793: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'auto' in 1.2.
  FutureWarning,
../_images/45750abf2112f0e2_cMD_processed_41_1.png

2.38.4.5. Shape analysis - principal moments of inertia#

inertia_tensor = md.compute_inertia_tensor(t)
principal_moments = np.linalg.eigvalsh(inertia_tensor)

# Compute normalized principal moments of inertia
npr1 = principal_moments[:, 0] / principal_moments[:, 2]
npr2 = principal_moments[:, 1] / principal_moments[:, 2]
mol_shape = np.stack((npr1, npr2), axis=1)

# Reweighting
if snakemake.params.method == "cMD":
    mol_shape_weights = reweight(mol_shape, None, "noweight")
else:
    mol_shape_weights = reweight(
        mol_shape, None, "amdweight_MC", weight_data
    )

# save
pickle_dump(snakemake.output.NPR_shape_data, mol_shape)
pickle_dump(snakemake.output.NPR_shape_weights, mol_shape_weights)
# Plot
x = mol_shape[:, 0]
y = mol_shape[:, 1]
v = mol_shape_weights
# create a triangulation out of these points
T = tri.Triangulation(x, y)

fig, ax = plt.subplots(figsize=(3.2677, 3.2677))

# plot the contour
# plt.tricontourf(x,y,T.triangles,v)
scat = ax.scatter(
    mol_shape[:, 0],
    mol_shape[:, 1],
    s=0.5,
    c=mol_shape_weights,
    cmap="Spectral_r",
    vmin=0,
    vmax=8,
    rasterized=True,
)

# create the grid
corners = np.array([[1, 1], [0.5, 0.5], [0, 1]])
triangle = tri.Triangulation(corners[:, 0], corners[:, 1])

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
outline = refiner.refine_triangulation(subdiv=0)

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
trimesh = refiner.refine_triangulation(subdiv=2)

# plotting the mesh
ax.triplot(trimesh, "--", color="grey")
ax.triplot(outline, "k-")
ax.set_xlabel(r"$I_{1}/I_{3}$")
ax.set_ylabel("$I_{2}/I_{3}$")
ax.text(0, 1.01, "rod")
ax.text(0.75, 1.01, "sphere")
ax.text(0.52, 0.48, "disk")
ax.set_ylim(0.45, 1.05)  # 0.6
ax.set_xlim(-0.05, 1.08) # 1.13
ax.set_aspect(1.88)  # 1.13 / 0.6
ax.set_title('Shape analysis')

colorbar = fig.colorbar(scat, label="Energy [kcal/mol]", fraction=0.046, pad=0.04)

fig.tight_layout()
fig.savefig(snakemake.output.NPR_shape_plot, dpi=DPI)
# final_figure_axs.append(sg.from_mpl(fig, savefig_kw={"dpi": DPI}))
../_images/45750abf2112f0e2_cMD_processed_44_0.png

2.38.4.6. Cremer pople analysis#

# load topology reference
# mol_ref = Chem.MolFromPDBFile(pdb_amber, removeHs=False, proximityBonding=True) #removeHs=True, proximityBonding=True)
mol_ref = Chem.MolFromMol2File(
    snakemake.input.ref_mol,
    removeHs=False,
)
mol_ref.RemoveAllConformers()
display(Markdown("Topology Reference:"))
mol_ref

Topology Reference:

../_images/45750abf2112f0e2_cMD_processed_50_1.png
mol_ref.GetNumAtoms() == t.n_atoms
True
# Get Bond Set
bonds = []
for bond in mol_ref.GetBonds():
    bonds.append((bond.GetBeginAtom().GetIdx(), bond.GetEndAtom().GetIdx()))

cremerpople_store = []

data = py_rdl.Calculator.get_calculated_result(bonds)

ring_length = []
for urf in data.urfs:
    rcs = data.get_relevant_cycles_for_urf(urf)
    for rc in rcs:
        ring_length.append(
            len(src.Ring_Analysis.Rearrangement(mol_ref, list(rc.nodes)))
        )
max_ring = ring_length.index(max(ring_length))

# for urf in data.urfs:
urf = data.urfs[max_ring]
rcs = data.get_relevant_cycles_for_urf(urf)
for rc in rcs:
    ringloop = src.Ring_Analysis.Rearrangement(
        mol_ref, list(rc.nodes)
    )  # rearrange the ring atom order
    # src.Ring_Analysis.CTPOrder(mol_ref, list(rc.nodes), n_res=t.n_residues) ## this does not work...
    coord = t.xyz[:, ringloop]
    for i in range(t.n_frames):
        ccoord = src.Ring_Analysis.Translate(coord[i])
        qs, angle = src.Ring_Analysis.GetRingPuckerCoords(
            ccoord
        )  # get cremer-pople parameters
        qs.extend([abs(x) for x in angle])
        cremerpople_store.append(qs)  # flatten tuple/list to just 1d list...
        # coord = np.array([mol0.GetConformer(1).GetAtomPosition(atom) for atom in ringloop]) # get current ring atom coordinates
        # ccoord = RA.Translate(coord) # translate ring with origin as cetner
        # cremerpople = RA.GetRingPuckerCoords(ccoord) # get cremer-pople parameters

cremerpople_store = np.array(cremerpople_store)
# from sklearn.preprocessing import normalize

pca = PCA(n_components=2)
pca_input = cremerpople_store.reshape(t.n_frames, len(qs))
# normalize(cremerpople_store.reshape(t.n_frames, len(qs)))

cp_reduced_output = pca.fit_transform(pca_input)

if snakemake.params.method == "cMD":
    cp_weights = reweight(cp_reduced_output, None, "noweight")
else:
    cp_weights = reweight(
        cp_reduced_output, None, "amdweight_MC", weight_data
    )

ax = src.pca.plot_PCA(
    cp_reduced_output,
    "CP",
    compound_index,
    cp_weights,
    explained_variance=pca.explained_variance_ratio_[:2],
)

if multiple:
    src.pca.plot_PCA_citra(
        cp_reduced_output[cis],
        cp_reduced_output[trans],
        "CP",
        compound_index,
        label=None,
        fig=None,
        ax=None,
    )
../_images/45750abf2112f0e2_cMD_processed_54_0.png

2.38.4.7. Comparison#

# produce a shared datasource with shared labels
if not use_shortened:
    plot_stride = 100
else:
    plot_stride = 1
reduced_dihedrals_t = reduced_dihedrals[::plot_stride]
reduced_pd_t = reduced_pd[::plot_stride]
mol_shape_t = mol_shape[::plot_stride]

# Either show cremer pople, or show shapes
show_cremer_pople = False

if show_cremer_pople:
    crepop_t = cp_reduced_output[::plot_stride]
    tmp_dict = {
        "dh_pc1": reduced_dihedrals_t[:, 0],
        "dh_pc2": reduced_dihedrals_t[:, 1],
        "pd_pc1": reduced_pd_t[:, 0],
        "pd_pc2": reduced_pd_t[:, 1],
        "tsne1": tsne_results[:, 0],
        "tsne2": tsne_results[:, 1],
        "cp1": crepop_t[:, 0],
        "cp2": crepop_t[:, 1],
    }
else:
    tmp_dict = {
        "dh_pc1": reduced_dihedrals_t[:, 0],
        "dh_pc2": reduced_dihedrals_t[:, 1],
        "pd_pc1": reduced_pd_t[:, 0],
        "pd_pc2": reduced_pd_t[:, 1],
        "tsne1": tsne_results[:, 0],
        "tsne2": tsne_results[:, 1],
        "npr1": mol_shape_t[:, 0],
        "npr2": mol_shape_t[:, 1],
    }
df = pd.DataFrame(tmp_dict)
source = ColumnDataSource(data=df)
# Linked plots in different representations
from bokeh.io import output_file, show
from bokeh.layouts import gridplot
from bokeh.models import ColumnDataSource, Label, LabelSet
from bokeh.plotting import figure
from bokeh.models import BooleanFilter, CDSView

TOOLS = "box_select,lasso_select,reset"

# create a new plot and add a renderer
left = figure(tools=TOOLS, plot_width=300, plot_height=300, title="Dihedral PCA")
left.dot("dh_pc1", "dh_pc2", source=source, selection_color="firebrick")

# create another new plot, add a renderer that uses the view of the data source
right = figure(
    tools=TOOLS, plot_width=300, plot_height=300, title="Pairwise NO distances"
)
right.dot("pd_pc1", "pd_pc2", source=source, selection_color="firebrick")

rightr = figure(
    tools=TOOLS, plot_width=300, plot_height=300, title="TSNE (of dihedral angles)"
)
rightr.dot("tsne1", "tsne2", source=source, selection_color="firebrick")

if show_cremer_pople:
    rightrr = figure(tools=TOOLS, plot_width=300, plot_height=300, title="Cremer-Pople")
    rightrr.dot("cp1", "cp2", source=source, selection_color="firebrick")
else:
    rightrr = figure(tools=TOOLS, plot_width=300, plot_height=300, title="PMI")
    rightrr.dot("npr1", "npr2", source=source, selection_color="firebrick")
    rightrr.line([0.5, 0, 1, 0.5], [0.5, 1, 1, 0.5], line_width=2, color="black")
    rightrr.line(
        [0.45, -0.05, 1.05, 0.45],
        [0.4, 1.1, 1.1, 0.4],
        line_width=2,
        color="white",
        line_alpha=0,
    )

    triangle = ColumnDataSource(
        data=dict(x=[0, 0.83, 0.44], y=[1, 1, 0.45], names=["rod", "sphere", "disk"])
    )

    labels = LabelSet(
        x="x",
        y="y",
        text="names",
        x_offset=0,
        y_offset=0,
        source=triangle,
        render_mode="canvas",
    )

    rightrr.add_layout(labels)

p = gridplot([[left, right, rightr, rightrr]], sizing_mode="stretch_width")
show(p)

2.38.5. DBSCAN-Clustering#

The following section provides details about the performed DBSCAN clustering. Detailed plots about parameter derivation for the clustering are hidden, but can be revealed.

# Derive epsilon for DBSCAN-clustering from data: epsilon = max distance between nearest neighbors
nbrs = NearestNeighbors(n_neighbors=2).fit(tsne_results)
distances, indices = nbrs.kneighbors(tsne_results)
epsilon = distances.max()
distances = np.sort(distances, axis=0)
distances = distances[:, 1]
plt.plot(distances)
plt.title("NN-distances in tsne plot")
plt.ylabel("NN-distance")
plt.show()
../_images/45750abf2112f0e2_cMD_processed_61_0.png
# Perform DBSCAN-clustering with varying min_samples parameter
num_clusters = []
num_noise = []
for i in range(0, 200, 1):
    clustering = DBSCAN(eps=epsilon, min_samples=i).fit(tsne_results)
    labels = clustering.labels_
    n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
    n_noise = list(labels).count(-1)
    num_clusters.append(n_clusters)
    num_noise.append(n_noise)

# Drop all points following the first detection of 0 clusters
num_clusters = np.array(num_clusters)
cutoff = np.argmin(num_clusters > 0)
num_clusters = num_clusters[:cutoff]
# print(num_clusters)

x = np.arange(0, len(num_clusters))
# Fit polynomial to detect right-most plateau
if x.size > 0:
    mymodel = np.poly1d(np.polyfit(x, num_clusters, 8))

    deriv = mymodel.deriv()
    roots = deriv.roots

    # discard complex roots
    r_roots = roots[np.isreal(roots)].real

    # discard negative values
    r_roots = r_roots[r_roots >= 0]

    # discard values greater than x.max()
    r_roots = r_roots[r_roots <= x.max() - 3]

    # Take largest root
    if r_roots != []:
        min_samples = int(r_roots.max())
        print(f"min_samples = {min_samples} was selected as parameter for clustering")
    else:
        min_samples = 15
        print(
            "Caution! min samples parameter was selected as fixed value b/c automatic determination failed. specify the parameter manually in the config!"
        )
else:
    min_samples = 15
# If config overrides, use config value:
if snakemake.wildcards.index in snakemake.config["cluster_conf"]:
    min_samples = int(snakemake.config["cluster_conf"][snakemake.wildcards.index])
    print(
        f"Override: Use min_samples={min_samples} instead of the above determined parameter"
    )
min_samples = 46 was selected as parameter for clustering
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/ipykernel_launcher.py:18: DeprecationWarning: elementwise comparison failed; this will raise an error in the future.
# Alternative: determine min_samples parameter by deciding for a fix fraction of points to classify as noise
# set cutoff as threshold percent of noise
threshhold = 0.05
num_noise = np.array(num_noise)
min_samples = np.argmin(num_noise < len(tsne_results) * threshhold)
# noise_cutoff
# min_samples = 8
display(f"Override: Use min_samples={min_samples} instead of the above determined parameter")
'Override: Use min_samples=30 instead of the above determined parameter'
plt.scatter(x, num_clusters, label="clustering with different min_sample parm.")
if x.size > 0:
    plt.plot(x, mymodel(x), label="poly-fit")
    plt.vlines(
        min_samples,
        2,
        num_clusters.max(),
        color="red",
        label="selected min_sample paramter",
    )
    plt.plot(x, deriv(x), label="derivative of poly-fit")
plt.legend(loc="lower left")
plt.title("Determining min_samples parameter for clustering")
plt.xlabel("min_samples parameter")
plt.ylabel("Number of clusters observed")
plt.savefig(snakemake.output.cluster_min_samp, dpi=DPI)
../_images/45750abf2112f0e2_cMD_processed_65_0.png
plt.plot(num_noise, label="Number of points classified as noise")
plt.xlabel("min_samples parameter")
plt.ylabel("Number of points classified as noise")
plt.title("Number of points classified as noise")
plt.show()
../_images/45750abf2112f0e2_cMD_processed_66_0.png
# Perform clustering for selected min_samples parameter
clustering = DBSCAN(eps=epsilon, min_samples=min_samples).fit(tsne_results)

threshhold = 0.01  # 0.05

n_clusters = len(set(clustering.labels_)) - (1 if -1 in clustering.labels_ else 0)
print(f"There are {n_clusters} clusters")

cluster_points = []
cluster_label_filter = []
cluster_percentage = []

cluster_labels_sorted_by_population = list(dict.fromkeys(sorted(clustering.labels_, key=list(clustering.labels_).count, reverse=True)))

plt.figure(figsize=(3.2677, 3.2677))
for cluster in cluster_labels_sorted_by_population:
    if cluster != -1:
        if len(clustering.labels_[clustering.labels_ == cluster]) >= threshhold * len(
            clustering.labels_
        ):
            clus_points = tsne_results[clustering.labels_ == cluster]
            plt.plot(
                clus_points[:, 0],
                clus_points[:, 1],
                marker=".",
                linewidth=0,
                label=f"Cluster {cluster}",
            )
            percentage = len(clustering.labels_[clustering.labels_ == cluster]) / len(
                clustering.labels_
            )
            plt.text(
                x=np.mean(clus_points[:, 0]),
                y=np.mean(clus_points[:, 1]),
                s=f"{cluster}: {percentage*100:0.2f}%",
                verticalalignment="center",
                horizontalalignment="center",
            )
            print(
                f"Cluster {cluster} makes up more than {threshhold * 100}% of points. ({percentage * 100:0.2f} % of total points)"
            )
            cluster_percentage.append(percentage)
            cluster_points.append(clustering.labels_ == cluster)
            cluster_label_filter.append(cluster)
        else:
            clus_points = tsne_results[clustering.labels_ == cluster]
            plt.plot(
                clus_points[:, 0],
                clus_points[:, 1],
                marker=".",
                linewidth=0,
                label=f"Cluster {cluster}",
                alpha=0.1,
            )
            percentage = len(clustering.labels_[clustering.labels_ == cluster]) / len(
                clustering.labels_
            )
            print(
                f"Exlude Cluster {cluster} is less than {threshhold*100}% of points. ({percentage * 100:0.2f} % of total points)"
            )
            plt.plot
    else:
        clus_points = tsne_results[clustering.labels_ == cluster]
        plt.plot(
            clus_points[:, 0],
            clus_points[:, 1],
            marker=".",
            linewidth=0,
            label=f"Noise",
            alpha=0.1,
            color="grey",
        )

        percentage = len(clustering.labels_[clustering.labels_ == cluster]) / len(
            clustering.labels_
        )
        print(f"Noise makes up {percentage * 100:0.2f} % of total points.")

# Shrink current axis by 20%

# plt.legend(loc="center right", bbox_to_anchor=(1.3,0.25))
plt.title(f"Clusters in t-SNE. \n Label: Cluster no. : % of total")
plt.xlabel("t-SNE dimension 1")
plt.ylabel("t-SNE dimension 2")
plt.tight_layout()
plt.savefig(snakemake.output.cluster_plot, dpi=DPI)
There are 17 clusters
Cluster 8 makes up more than 1.0% of points. (24.34 % of total points)
Cluster 7 makes up more than 1.0% of points. (14.80 % of total points)
Cluster 3 makes up more than 1.0% of points. (11.58 % of total points)
Cluster 13 makes up more than 1.0% of points. (10.76 % of total points)
Noise makes up 6.16 % of total points.
Cluster 1 makes up more than 1.0% of points. (4.84 % of total points)
Cluster 2 makes up more than 1.0% of points. (4.62 % of total points)
Cluster 4 makes up more than 1.0% of points. (3.94 % of total points)
Cluster 0 makes up more than 1.0% of points. (3.32 % of total points)
Cluster 6 makes up more than 1.0% of points. (3.22 % of total points)
Cluster 11 makes up more than 1.0% of points. (2.82 % of total points)
Cluster 5 makes up more than 1.0% of points. (2.12 % of total points)
Cluster 15 makes up more than 1.0% of points. (1.92 % of total points)
Cluster 9 makes up more than 1.0% of points. (1.58 % of total points)
Cluster 16 makes up more than 1.0% of points. (1.34 % of total points)
Cluster 12 makes up more than 1.0% of points. (1.20 % of total points)
Exlude Cluster 10 is less than 1.0% of points. (0.76 % of total points)
Exlude Cluster 14 is less than 1.0% of points. (0.68 % of total points)
../_images/45750abf2112f0e2_cMD_processed_67_1.png
plt.figure(figsize=(3.2677, 3.2677))
plt.plot(clustering.labels_, marker=1, linewidth=0)
plt.title("Clusters over time (-1: noise)")
plt.xlabel("Snapshot")
plt.ylabel("Cluster no.")
plt.savefig(snakemake.output.cluster_time, dpi=DPI)
../_images/45750abf2112f0e2_cMD_processed_68_0.png
# Find cluster points in original trajectory, compute average structure,
# then find closest (min-rmsd) cluster structure to this
reduced_ind = np.arange(0, len(dihe), cluster_stride)
reduced_g_dihe = dihe[reduced_ind, :]
cluster_min_pca = []
cluster_index = []
mol_shape_cluster = []

t0 = t[0].time
dt = t.timestep

for i, cluster_name in zip(cluster_points, cluster_label_filter):

    # cluster points in original trajectory
    indices = reduced_ind[i]
    avg_struct = np.mean(t[indices].xyz, axis=0)
    avg_t = md.Trajectory(xyz=avg_struct, topology=None)

    # compute average dihedral angles for each cluster:
    phi, psi, omega = src.dihedrals.getDihedrals(t[indices])
    print(
        np.degrees(src.dihedrals.angle_mean(phi)),
        np.degrees(src.dihedrals.angle_mean(psi)),
        np.degrees(src.dihedrals.angle_mean(omega)),
    )

    # find min-RMSD structure to the average
    rmsd = md.rmsd(t[indices], avg_t, 0)
    min_rmsd_idx = np.where(rmsd == rmsd.min())
    cluster_min = t[indices][min_rmsd_idx]
    cluster_index.append(int((cluster_min.time - t0) / dt))
    print(
        f"Cluster {cluster_name}: Closest min structure is frame {int((cluster_min.time - t0) / dt)} (time: {float(cluster_min.time)})"
    )
    # Compute dihedrals of min-RMSD cluster structure, and transform to PCA
    cluster_min = src.dihedrals.getReducedDihedrals(cluster_min)
    cluster_min_pca.append(pca_d.transform(cluster_min))
    
    # Compute shape
    inertia_tensor_cluster = md.compute_inertia_tensor(t[indices][min_rmsd_idx])
    principal_moments_cluster = np.linalg.eigvalsh(inertia_tensor_cluster)

    # Compute normalized principal moments of inertia
    npr1_cluster = principal_moments_cluster[:, 0] / principal_moments_cluster[:, 2]
    npr2_cluster = principal_moments_cluster[:, 1] / principal_moments_cluster[:, 2]
    mol_shape_cluster.append(np.stack((npr1_cluster, npr2_cluster), axis=1))
[ -60.62617    71.848915  104.354866 -106.635185  -79.74971   -60.706287
   72.10116   -78.87502    75.67976   -69.918816 -132.26651   154.56462 ] [ 129.02745     12.691336  -152.24297    144.0775     124.616196
  143.8024     -44.667797   -30.227278    -4.1626735  136.69478
  160.54375   -123.16811  ] [ 178.95918  177.65546  176.65945 -179.43533 -178.45056 -176.66812
 -177.22865  175.97594  173.28554 -173.26022 -177.76398 -179.40623]
Cluster 8: Closest min structure is frame 492000 (time: 1968004.0)
[ -59.47773    69.80312   114.39714  -142.6793    -79.46996   -63.68406
   74.13396   -72.11159    73.2709    -95.746025 -110.041885  154.10052 ] [ 131.23521    11.739391 -131.84921   138.83376   121.42595   147.91069
  -52.318417  -30.426651   16.894075  118.07091   163.45071  -127.090775] [ 178.74184  175.34923 -177.36662 -175.7534  -179.57556 -176.90567
 -178.6425   175.47475  179.09595 -176.18506 -179.87106 -178.491  ]
Cluster 7: Closest min structure is frame 361200 (time: 1444804.0)
[ -64.214874   71.73751   123.43063  -154.06233   -89.61876   -65.67247
   67.74357   -76.92777   143.84273   -95.59094  -147.81996   135.08698 ] [ 131.37251      8.8900175 -158.90466    129.30588    132.97899
  148.40358   -140.81868    134.19127   -152.67972    138.6317
  136.30049   -101.53701  ] [ 177.42087  175.41063 -175.3312   173.7404   174.35403 -176.32353
  178.66359  179.30536 -176.17572  179.9399   179.70952  176.48917]
Cluster 3: Closest min structure is frame 250400 (time: 1001604.0)
[-101.69435   68.28367  137.08687 -147.82173  -77.22966  -67.5358
   66.77775  -85.47925   89.88906 -114.85946  -85.55692   70.24772] [ 153.70082     24.620373  -139.68433    131.1127     128.86835
  140.40149      1.7629153  -22.577137   -28.029846   135.85269
  -31.289743  -144.73598  ] [ 169.32014  179.21344  174.018    173.61107 -177.72139  171.98578
 -176.52785 -177.37047  172.5942  -177.86191 -175.48723 -176.48228]
Cluster 13: Closest min structure is frame 304700 (time: 1218804.0)
[ -85.466415   66.740715  108.77668  -148.28226   -83.842     -59.30203
   72.02725   -81.13018   127.86365   -76.9484    -70.86004   124.325935] [ 118.26636    14.325351 -139.0385     70.20134   131.73479   137.23239
   -9.538658   -8.699624 -147.57466   138.99956   148.40903   -51.88224 ] [-176.33047 -177.18758 -178.91441  179.27081 -177.80426  178.26598
  177.899    179.0436  -177.30804  178.19562 -177.44753  178.5012 ]
Cluster 1: Closest min structure is frame 44300 (time: 177204.0)
[ -61.165405   69.006676  101.88185  -130.1698    -83.04437   -61.010574
   69.1052    -82.05059    84.99895  -144.28639  -128.50311   152.46606 ] [ 127.60574     14.444027  -137.50089    137.27611    131.1902
  136.30775     -0.9909668  -24.207685    10.867609   138.909
  168.33548   -108.5213   ] [-179.52628 -179.32184  178.4159   172.72105 -176.78963  175.26854
 -176.9202  -179.7989  -177.66057  179.52089  177.29182 -177.96202]
Cluster 2: Closest min structure is frame 361400 (time: 1445604.0)
[-140.35425    60.785908  105.77773  -153.6347    -88.03163   -66.0142
   67.1316    -78.72673   144.4261    -85.14605  -142.30965    80.18262 ] [ 119.85174    21.559927 -141.75302   130.9508    132.37164   149.19164
 -137.7332    131.79857  -157.46916   135.71758   146.1534     10.00424 ] [-171.30948 -171.45811  179.43231  173.94069  174.39783 -176.04556
  178.2988   177.78693 -175.90694  178.84633 -177.11685  177.34007]
Cluster 4: Closest min structure is frame 84300 (time: 337204.0)
[ -92.46765    66.50215   104.390305 -153.17299   -92.8088    -64.00766
   67.74067  -139.93959    62.247437 -129.38591   -71.89082   117.00843 ] [ 118.64311    19.217735 -144.57738   105.260376  133.712     134.22096
    9.571238  134.57822  -142.20813   137.45409   143.30334   -42.861122] [-176.41965 -176.79875 -179.11316  177.08003 -179.67969  174.48663
 -178.60474  176.86302  177.63644  178.98105 -178.70074  177.60793]
Cluster 0: Closest min structure is frame 42500 (time: 170004.0)
[-135.34401    61.487045  105.76242  -141.5625    -86.09678   -62.30721
   70.49024   -78.454605   80.77869  -102.090385 -132.23094    97.4845  ] [ 106.597176   24.726233 -138.23598   122.09861   125.260864  147.25404
  -27.580505  -26.38651     3.739861  127.48366   152.9565     11.90725 ] [-172.89313 -169.80635  177.87692 -177.48125 -179.31618  179.50862
 -179.12392  178.03099  177.28726 -176.70813  177.98228  177.52995]
Cluster 6: Closest min structure is frame 39600 (time: 158404.0)
[ -61.228256   70.93344   117.9964   -153.89368   -96.744835  -61.58907
   73.877266  -79.23435    78.0376    -69.225    -156.1005    131.03435 ] [ 130.00696     9.274017 -155.10107   112.34835   123.930595  144.22435
  -30.506977  -18.909693  -17.42529   122.19764   136.96129  -100.22486 ] [ 179.351    175.4734  -176.65111 -176.1225  -179.43364  179.62498
 -179.08278  176.79898  170.86452 -171.75851  179.5622   176.09866]
Cluster 11: Closest min structure is frame 57200 (time: 228804.0)
[ -67.3319     68.7375    106.34305  -119.10049   -78.53453   -61.55633
   67.445305 -116.362564  -58.26856  -108.38169  -130.85829   144.76949 ] [ 124.09751    14.64964  -151.14684   127.68899   134.43994   133.87085
    9.525061  144.72333   -16.278852  132.3803    151.3213    -94.24132 ] [-179.72018 -178.81454  177.38094  179.0406  -179.97366  178.47815
  178.35538 -179.47676 -176.86133  176.89534 -179.57568 -179.40964]
Cluster 5: Closest min structure is frame 274000 (time: 1096004.0)
[-110.20199    62.389397  116.10397  -141.66457   -81.27768   -61.269333
   81.99035   -93.56403    65.92216  -129.78052   -67.998535  112.8662  ] [ 124.615005   19.172354 -142.8418    101.143745  145.28929   158.281
 -167.94661   147.4515     18.986986  -25.545103  141.3533    -19.120949] [-178.75453 -174.08034 -179.61777  175.3507   178.95459 -179.69635
 -168.24304  169.62383 -174.30655  176.31747  178.1582   175.69855]
Cluster 15: Closest min structure is frame 257400 (time: 1029604.0)
[ -64.46939    69.7872    113.775505 -158.57121  -122.14478   -64.70476
   68.79916   -86.89312    84.5813   -139.01306  -157.82074   126.23962 ] [ 127.42145      13.841605   -157.42204     131.98593     129.63388
  140.0457       -0.29495925  -18.059292     18.273767    117.40076
  136.9594      -90.987495  ] [-179.88815  176.77425 -175.97195  176.62526 -177.87077  174.50453
 -177.94173 -175.75209 -177.414   -177.99008  177.8096   176.81601]
Cluster 9: Closest min structure is frame 344700 (time: 1378804.0)
[ -94.317444   65.944466  119.07866  -148.75822   -83.56626   -59.26859
   69.88989   -95.717476  -54.438168  -73.335526  -57.504322  113.7468  ] [ 116.50712      18.606836   -150.09949     118.51736     127.59009
  129.61388       0.33226284  147.14758     -25.707       -11.764793
  128.92358     -33.487213  ] [-179.61139 -177.26555  179.6927   159.8975  -169.39447  175.99275
  179.65202  179.50618  177.00587  179.1091  -174.21669  177.65353]
Cluster 16: Closest min structure is frame 277100 (time: 1108404.0)
[ -66.00148    71.08476   107.39577  -147.17262   -66.917885  -62.33613
   73.46153   -79.9839     87.02665  -148.30666  -145.28151   118.31239 ] [ 124.53705     12.046654  -148.81886     55.100872   129.36438
  141.8326      -3.5019886  -18.388197     9.418847   141.41612
  139.24591    -77.29229  ] [-179.35925 -179.03484 -176.13972 -173.77536 -176.90471  176.0018
  179.73514  178.1464  -175.36218  179.73146 -176.98683  174.75682]
Cluster 12: Closest min structure is frame 472600 (time: 1890404.0)
# Plot cluster mins in original d-PCA plot
fig, ax = plt.subplots(figsize=(3.2677, 3.2677))
ax = src.pca.plot_PCA(
    reduced_dihedrals,
    "dihedral",
    compound_index,
    d_weights,
    "Energy [kcal/mol]",
    fig,
    ax,
    explained_variance=pca_d.explained_variance_ratio_[:2],
)
# ADD LEGEND ENTRY FOR MD
ax.plot(
    np.array(cluster_min_pca)[:, 0, 0],
    np.array(cluster_min_pca)[:, 0, 1],
    label="Clusters",
    linewidth=0,
    marker="x",
    c='black',
)

ax.legend(["MD","MD Clusters"], framealpha=0.5)

fig.tight_layout()

ax.set_title("Dihedral PCA")
fig.savefig(snakemake.output.cluster_pca, dpi=DPI)
final_figure_axs.append(sg.from_mpl(fig, savefig_kw={"dpi": DPI}))
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/ipykernel_launcher.py:25: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/ipykernel_launcher.py:28: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/svgutils/transform.py:425: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
  fig.savefig(fid, format="svg", **savefig_kw)
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/IPython/core/pylabtools.py:151: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
  fig.canvas.print_figure(bytes_io, **kw)
../_images/45750abf2112f0e2_cMD_processed_70_1.png
# Plot cluster mins in shape plot
# Plot
x = mol_shape[:, 0]
y = mol_shape[:, 1]
v = mol_shape_weights
# create a triangulation out of these points
T = tri.Triangulation(x, y)

fig, ax = plt.subplots(figsize=(3.2677, 3.2677))

# plot the contour
# plt.tricontourf(x,y,T.triangles,v)
scat = ax.scatter(
    mol_shape[:, 0],
    mol_shape[:, 1],
    s=0.5,
    c=mol_shape_weights,
    cmap="Spectral_r",
    vmin=0,
    vmax=8,
    rasterized=True,
)

# create the grid
corners = np.array([[1, 1], [0.5, 0.5], [0, 1]])
triangle = tri.Triangulation(corners[:, 0], corners[:, 1])

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
outline = refiner.refine_triangulation(subdiv=0)

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
trimesh = refiner.refine_triangulation(subdiv=2)

# plotting the mesh
ax.triplot(trimesh, "--", color="grey")
ax.triplot(outline, "k-")
ax.set_xlabel(r"$I_{1}/I_{3}$")
ax.set_ylabel("$I_{2}/I_{3}$")
ax.text(0, 1.01, "rod")
ax.text(0.75, 1.01, "sphere")
ax.text(0.52, 0.48, "disk")
ax.set_ylim(0.45, 1.05)  # 0.6
ax.set_xlim(-0.05, 1.08) # 1.13
ax.set_aspect(1.88)  # 1.13 / 0.6
ax.set_title('Shape analysis')

ax.plot(
    np.array(mol_shape_cluster)[:, 0, 0],
    np.array(mol_shape_cluster)[:, 0, 1],
    label="Clusters",
    linewidth=0,
    marker="x",
    c='black',
)

# ax.legend(["MD","MD Clusters"], framealpha=0.5)

colorbar = fig.colorbar(scat, label="Energy [kcal/mol]", fraction=0.046, pad=0.04)

fig.tight_layout()
fig.savefig(snakemake.output.NPR_shape_plot, dpi=DPI)
final_figure_axs.append(sg.from_mpl(fig, savefig_kw={"dpi": DPI}))
../_images/45750abf2112f0e2_cMD_processed_71_0.png
display(Markdown("Show most extreme structures."))
most_spherical = (x + y).argmax()
most_disk = (x - 0.5 + y - 0.5).argmin()
most_rod = (1 - y + x).argmin()
most_occupied_cluster = cluster_index[0]

fig, axs = plt.subplots(1,4, figsize=(6.7323, 3.2677 / 1.8))
for ax, frame_i, title_i in zip(axs.flatten(), [most_spherical, most_disk, most_rod, most_occupied_cluster], ["most spherical", "most disk-like", "most rod-like", "most pop. cluster"]):
    img = src.utils.pymol_image(t[frame_i], t[most_occupied_cluster])
    ax.imshow(img)
    ax.set_title(title_i)
    ax.axis('off')
fig.tight_layout()
# fig.subplots_adjust(wspace=0, hspace=0)
final_figure_axs.append(sg.from_mpl(fig, savefig_kw={"dpi": DPI}))

Show most extreme structures.

../_images/45750abf2112f0e2_cMD_processed_72_1.png
# create a new plot and add a renderer
plot_stride = 10
from bokeh.models import HoverTool

x = np.array(cluster_min_pca)[:, 0, 0]
y = np.array(cluster_min_pca)[:, 0, 1]
percentage = cluster_percentage

data = dict(x=x, y=y, percentage=percentage)


p = figure(
    plot_width=400,
    plot_height=400,
    title="Average cluster structures in PCA space",
    tools="reset",
)
p.dot(
    reduced_dihedrals[::plot_stride, 0],
    reduced_dihedrals[::plot_stride, 1],
    selection_color="firebrick",
    legend_label="simulation frames",
)

hoverable = p.triangle(
    x="x", y="y", source=data, color="firebrick", size=8, legend_label="Clusters"
)
p.add_tools(
    HoverTool(
        tooltips=[("cluster #", "$index"), ("% of total frames", "@percentage{0.0%}")],
        renderers=[hoverable],
    )
)
show(p)
# Interactive viewing of clusters in 3d (needs running jupyter notebook)
cluster_traj = t[cluster_index]
cluster_traj.superpose(
    cluster_traj, 0, atom_indices=cluster_traj.top.select("backbone")
)
view = nv.show_mdtraj(cluster_traj)
view
# save rst files from clusters, account for GaMD equilibration. Does not work with stride.
cluster_full_store = md.load_frame(snakemake.input.traj, cluster_index[0] + frames_start, top=snakemake.input.top)
for idx in cluster_index:
    cluster_full_t = md.load_frame(snakemake.input.traj, idx, top=snakemake.input.top)
    cluster_full_t.save_netcdfrst(
        f"{snakemake.params.rst_dir}rst_{idx}.rst"
    )
    cluster_full_store = cluster_full_store.join(cluster_full_t, discard_overlapping_frames=True)
cluster_full_store.superpose(
    cluster_full_store, 0, atom_indices=cluster_full_t.top.select("backbone")
)
cluster_full_store.save_pdb(snakemake.output.cluster_solvated)
# compute rmsd between clusters
from itertools import combinations

indices = list(combinations(range(cluster_traj.n_frames), 2))

rmsd_backbone = np.zeros((cluster_traj.n_frames, cluster_traj.n_frames))
rmsd = np.zeros((cluster_traj.n_frames, cluster_traj.n_frames))
for i, j in indices:
    rmsd_backbone[i, j] = (
        md.rmsd(
            cluster_traj[i],
            cluster_traj[j],
            atom_indices=cluster_traj.top.select("backbone"),
        )
        * 10
    )
    rmsd[i, j] = md.rmsd(cluster_traj[i], cluster_traj[j]) * 10



sns.set_style("ticks")
fig, axs = plt.subplots(1, 2, figsize=(6.7323, 3.2677))
titles = ["RMSD", "Backbone RMSD"]  # between different clusters
for i, X in enumerate([rmsd, rmsd_backbone]):
    X = X + X.T - np.diag(np.diag(X))
    # get lower diagonal matrix
    X = np.tril(X)
    df = pd.DataFrame(X)
    axs[i] = sns.heatmap(
        df, annot=False, cmap="Greys", ax=axs[i], cbar_kws={"label": r"RMSD in $\AA$"}
    )
    axs[i].set_title(titles[i])
    axs[i].set_xlabel("Cluster no.")
    axs[i].set_ylabel("Cluster no.")
    # ax.invert_xaxis()
fig.tight_layout()
plt.show()
../_images/45750abf2112f0e2_cMD_processed_77_0.png
# compute dihedral angles
*_, omega = src.dihedrals.getDihedrals(cluster_traj)
omega_deg = np.abs(np.degrees(omega))
plt.plot(omega_deg)
plt.title(f"Omega angles of different clusters. Compound {compound_index}")
plt.xlabel("Cluster id")
plt.ylabel("Omega dihedral angle [°]")
plt.show()
../_images/45750abf2112f0e2_cMD_processed_78_0.png
pymol_script = f"""load {snakemake.output.cluster_pdb}
# inspired by: https://gist.github.com/bobbypaton/1cdc4784f3fc8374467bae5eb410edef
cmd.bg_color("white")
cmd.set("ray_opaque_background", "off")
cmd.set("orthoscopic", 0)
cmd.set("transparency", 0.1)
cmd.set("dash_gap", 0)
cmd.set("ray_trace_mode", 1)
cmd.set("ray_texture", 2)
cmd.set("antialias", 3)
cmd.set("ambient", 0.5)
cmd.set("spec_count", 5)
cmd.set("shininess", 50)
cmd.set("specular", 1)
cmd.set("reflect", .1)
cmd.space("cmyk")

#cmd.cartoon("oval")
cmd.show("sticks")
cmd.show("spheres")
cmd.color("gray85","elem C")
cmd.color("gray98","elem H")
cmd.color("slate","elem N")
cmd.color("red","elem O")
cmd.set("stick_radius",0.07)
cmd.set("sphere_scale",0.18)
cmd.set("sphere_scale",0.13, "elem H")
cmd.set("dash_gap",0.01)
cmd.set("dash_radius",0.07)
cmd.set("stick_color","black")
cmd.set("dash_gap",0.01)
cmd.set("dash_radius",0.035)
cmd.hide("nonbonded")
cmd.hide("cartoon")
cmd.hide("lines")
cmd.orient()
cmd.zoom()
cmd.hide("labels")

cmd.mpng("{snakemake.params.cluster_dir}test_", width=1000, height=1000)

"""
pymol_script_file = f"{snakemake.params.cluster_dir}pym.pml"
with open(pymol_script_file, "w") as f:
    f.write(pymol_script)
# Run pymol to plot clusters
!pymol -c $pymol_script_file
 PyMOL(TM) Molecular Graphics System, Version 2.5.0.
 Copyright (c) Schrodinger, LLC.
 All Rights Reserved.
 
    Created by Warren L. DeLano, Ph.D. 
 
    PyMOL is user-supported open-source software.  Although some versions
    are freely available, PyMOL is not in the public domain.
 
    If PyMOL is helpful in your work or study, then please volunteer 
    support for our ongoing efforts to create open and affordable scientific
    software by purchasing a PyMOL Maintenance and/or Support subscription.

    More information can be found at "http://www.pymol.org".
 
    Enter "help" for a list of commands.
    Enter "help <command-name>" for information on a specific command.

 Hit ESC anytime to toggle between text and graphics.

 Detected 24 CPU cores.  Enabled multithreaded rendering.
PyMOL>load data/processed/refactor-test/results/65/H2O/cMD/2000/0/45750abf2112f0e2_clusters/clusters.pdb
 ObjectMolecule: Read crystal symmetry information.
 ObjectMoleculeReadPDBStr: read MODEL 1
 ObjectMoleculeReadPDBStr: read MODEL 2
 ObjectMoleculeReadPDBStr: read MODEL 3
 ObjectMoleculeReadPDBStr: read MODEL 4
 ObjectMoleculeReadPDBStr: read MODEL 5
 ObjectMoleculeReadPDBStr: read MODEL 6
 ObjectMoleculeReadPDBStr: read MODEL 7
 ObjectMoleculeReadPDBStr: read MODEL 8
 ObjectMoleculeReadPDBStr: read MODEL 9
 ObjectMoleculeReadPDBStr: read MODEL 10
 ObjectMoleculeReadPDBStr: read MODEL 11
 ObjectMoleculeReadPDBStr: read MODEL 12
 ObjectMoleculeReadPDBStr: read MODEL 13
 ObjectMoleculeReadPDBStr: read MODEL 14
 ObjectMoleculeReadPDBStr: read MODEL 15
 CmdLoad: "" loaded as "clusters".
PyMOL>cmd.bg_color("white")
PyMOL>cmd.set("ray_opaque_background", "off")
PyMOL>cmd.set("orthoscopic", 0)
PyMOL>cmd.set("transparency", 0.1)
PyMOL>cmd.set("dash_gap", 0)
PyMOL>cmd.set("ray_trace_mode", 1)
PyMOL>cmd.set("ray_texture", 2)
PyMOL>cmd.set("antialias", 3)
PyMOL>cmd.set("ambient", 0.5)
PyMOL>cmd.set("spec_count", 5)
PyMOL>cmd.set("shininess", 50)
PyMOL>cmd.set("specular", 1)
PyMOL>cmd.set("reflect", .1)
PyMOL>cmd.space("cmyk")
 Color: loaded table '/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/pymol/pymol_path/data/pymol/cmyk.png'.
PyMOL>cmd.show("sticks")
PyMOL>cmd.show("spheres")
PyMOL>cmd.color("gray85","elem C")
PyMOL>cmd.color("gray98","elem H")
PyMOL>cmd.color("slate","elem N")
PyMOL>cmd.color("red","elem O")
PyMOL>cmd.set("stick_radius",0.07)
PyMOL>cmd.set("sphere_scale",0.18)
PyMOL>cmd.set("sphere_scale",0.13, "elem H")
PyMOL>cmd.set("dash_gap",0.01)
PyMOL>cmd.set("dash_radius",0.07)
PyMOL>cmd.set("stick_color","black")
PyMOL>cmd.set("dash_gap",0.01)
PyMOL>cmd.set("dash_radius",0.035)
PyMOL>cmd.hide("nonbonded")
PyMOL>cmd.hide("cartoon")
PyMOL>cmd.hide("lines")
PyMOL>cmd.orient()
PyMOL>cmd.zoom()
PyMOL>cmd.hide("labels")
PyMOL>cmd.mpng("data/processed/refactor-test/results/65/H2O/cMD/2000/0/45750abf2112f0e2_clusters/test_", width=1000, height=1000)
 Movie: frame    1 of   15, 0.98 sec. (0:00:14 - 0:00:14 to go).
 Movie: frame    2 of   15, 0.97 sec. (0:00:13 - 0:00:13 to go).
 Movie: frame    3 of   15, 0.98 sec. (0:00:12 - 0:00:12 to go).
 Movie: frame    4 of   15, 1.00 sec. (0:00:11 - 0:00:11 to go).
 Movie: frame    5 of   15, 0.96 sec. (0:00:10 - 0:00:10 to go).
 Movie: frame    6 of   15, 0.97 sec. (0:00:09 - 0:00:09 to go).
 Movie: frame    7 of   15, 0.98 sec. (0:00:08 - 0:00:08 to go).
 Movie: frame    8 of   15, 1.01 sec. (0:00:08 - 0:00:07 to go).
 Movie: frame    9 of   15, 0.97 sec. (0:00:06 - 0:00:06 to go).
 Movie: frame   10 of   15, 0.98 sec. (0:00:05 - 0:00:05 to go).
 Movie: frame   11 of   15, 0.95 sec. (0:00:04 - 0:00:04 to go).
 Movie: frame   12 of   15, 1.01 sec. (0:00:04 - 0:00:03 to go).
 Movie: frame   13 of   15, 1.04 sec. (0:00:03 - 0:00:02 to go).
 Movie: frame   14 of   15, 1.07 sec. (0:00:02 - 0:00:01 to go).
 Movie: frame   15 of   15, 0.96 sec. (0:00:00 - 0:00:00 to go).
data = []
cluster_imgs = [
    f"{snakemake.params.cluster_dir}test_{str(i+1).zfill(4)}.png"
    for i in range(cluster_traj.n_frames)
]

[data.append(mpimg.imread(img)) for img in cluster_imgs]
display("Pymol images read")
'Pymol images read'
# get default colors
colors = plt.rcParams["axes.prop_cycle"].by_key()["color"]
# make colors longer if more clusters than colors...
while len(cluster_label_filter) > len(colors):
    colors.extend(colors)
    print("Colors appended..")

fig, axs = plt.subplots(len(cluster_label_filter), 3, sharex="col", squeeze=False)
fig.set_size_inches(12, 3 * len(cluster_label_filter))
# plot cluster images
for i in range(cluster_traj.n_frames):
    # print(f"final {i}")
    axs[i, 0].imshow(data[i])
    axs[i, 0].tick_params(
        axis="both",
        which="both",
        bottom=False,
        top=False,
        left=False,
        labelleft=False,
        labelbottom=False,
    )
    # axs[i,0].tick_params(axis='y', which='both', bottom=False, top=False, labelbottom=False)
# plot corresponding pca's:
for i in range(cluster_traj.n_frames):
    axs[i, 1].scatter(
        reduced_dihedrals[:, 0],
        reduced_dihedrals[:, 1],
        marker=".",
        s=0.5,
        alpha=1,
        c="black",
    )
# add cluster representations
for ii, iii, iiii in zip(
    cluster_min_pca, cluster_label_filter, range(len(cluster_label_filter))
):
    (clus,) = axs[iiii, 1].plot(
        ii[:, 0],
        ii[:, 1],
        marker="^",
        label=f"Cluster {iii}",
        linewidth=0,
        c=colors[iiii],
    )
    # clus.get_color()


# add noe plots
for i, j, k in zip(range(cluster_traj.n_frames), cluster_index, cluster_label_filter):
    NOE = src.noe.read_NOE(snakemake.input.noe)
    if multiple:
        NOE_trans, NOE_cis = NOE
        NOE_cis_dict = NOE_cis.to_dict(orient="index")
        NOE_trans_dict = NOE_trans.to_dict(orient="index")
    else:
        NOE_dict = NOE.to_dict(orient="index")

    current_cluster = cluster_traj[i]
    # print(j)
    if multiple:
        if j in cis:
            # print("cis")
            NOE_dict = NOE_cis_dict
            NOE = NOE_cis
            axs[i, 2].set_title(f"Cluster {k} (cis)")
        else:
            # print("trans!")
            NOE_dict = NOE_trans_dict
            NOE = NOE_trans
            axs[i, 2].set_title(f"Cluster {k} (trans)")
    else:
        axs[i, 2].set_title(f"Cluster {k}")
    NOE["md"], _, _2, NOE_dist, _3 = src.noe.compute_NOE_mdtraj(
        NOE_dict, current_cluster
    )
    # Deal with ambigous NOEs
    NOE = NOE.explode("md")
    # and ambigous/multiple values
    NOE = NOE.explode("NMR exp")
    fig, axs[i, 2] = src.noe.plot_NOE(NOE, fig, axs[i, 2])
fig.tight_layout()
fig.savefig(snakemake.output.cluster_structs)
Colors appended..
../_images/45750abf2112f0e2_cMD_processed_83_1.png
# TODO? cluster NOE statistics....

2.38.6. NOEs#

In the following section, we compute the NOE values for the simulation.

NOE = src.noe.read_NOE(snakemake.input.noe)
NOE_output = {}

2.38.6.1. NOE without reweighting.#

The following NOE plot is computed via \(r^{-6}\) averaging. No reweighting is performed. (so unless the simulation is a conventional MD simulation, the following plot is not a valid comparison to experiment.)

if multiple:
    fig, axs = plt.subplots(2, 1, figsize=(6.7323, 3.2677))
    NOE_trans, NOE_cis = NOE
    NOE_cis_dict = NOE_cis.to_dict(orient="index")
    NOE_trans_dict = NOE_trans.to_dict(orient="index")
    if len(cis) > CIS_TRANS_CUTOFF:
        NOE_cis["md"], _, _2, NOE_dist_cis, _3 = src.noe.compute_NOE_mdtraj(
            NOE_cis_dict, t[cis]
        )

        NOE_output[f"{multi['cis']}"] = NOE_cis.to_dict(orient="index")
        # Deal with ambigous NOEs
        NOE_cis = NOE_cis.explode("md")
        # and ambigous/multiple values
        NOE_cis = NOE_cis.explode("NMR exp")
        fig, axs[1] = src.noe.plot_NOE(NOE_cis, fig, axs[1])
        axs[1].set_title(f"Compound {multi['cis']} (cis)")
    else:
        print("Cis skipped because no frames are cis.")
    if len(trans) > CIS_TRANS_CUTOFF:
        NOE_trans["md"], _, _2, NOE_dist_trans, _3 = src.noe.compute_NOE_mdtraj(
            NOE_trans_dict, t[trans]
        )

        NOE_output[f"{multi['trans']}"] = NOE_trans.to_dict(orient="index")
        # Deal with ambigous NOEs
        NOE_trans = NOE_trans.explode("md")
        # and ambigous/multiple values
        NOE_trans = NOE_trans.explode("NMR exp")

        fig, axs[0] = src.noe.plot_NOE(NOE_trans, fig, axs[0])
        axs[0].set_title(f"Compound {multi['trans']} (trans)")
    else:
        print("Trans skipped because no frames are cis")
else:
    NOE_dict = NOE.to_dict(orient="index")
    NOE["md"], _, _2, NOE_dist, _3 = src.noe.compute_NOE_mdtraj(NOE_dict, t)

    # Save NOE dict
    NOE_output = {f"{compound_index}": NOE.to_dict(orient="index")}
    # Deal with ambigous NOEs
    NOE = NOE.explode("md")
    # and ambigous/multiple values
    NOE = NOE.explode("NMR exp")
    fig, ax = src.noe.plot_NOE(NOE)
    ax.set_title(f"Compound {compound_index}. NOE without reweighting.", y=1.2)
fig.tight_layout()
fig.savefig(snakemake.output.noe_plot, dpi=DPI)
# save as .json file
src.utils.json_dump(snakemake.output.noe_result, NOE_output)
../_images/45750abf2112f0e2_cMD_processed_88_0.png

2.38.6.2. Reweighted NOEs#

The following NOE plot was reweighted via a 1d PMF method.

# 1d PMF reweighted NOEs

NOE_output = {}

if snakemake.params.method != "cMD":
    if multiple:
        fig, axs = plt.subplots(2, 1, figsize=(6.7323, 6.7323))
        NOE_trans, NOE_cis = NOE
        NOE_cis_dict = NOE_cis.to_dict(orient="index")
        NOE_trans_dict = NOE_trans.to_dict(orient="index")
        if len(cis) > CIS_TRANS_CUTOFF:
            (
                NOE_cis["md"],
                NOE_cis["lower"],
                NOE_cis["upper"],
                NOE_dist_cis,
                pmf_plot_cis,
            ) = src.noe.compute_NOE_mdtraj(
                NOE_cis_dict, t[cis],
                reweigh_type=1, slicer=cis, weight_data=weight_data,
            )
            # TODO: this should not give an error!

            NOE_output[f"{multi['cis']}"] = NOE_cis.to_dict(orient="index")

            # Deal with ambigous NOEs
            NOE_cis = NOE_cis.explode(["md", "lower", "upper"])
            # and ambigous/multiple values
            NOE_cis = NOE_cis.explode("NMR exp")
            fig, axs[1] = src.noe.plot_NOE(NOE_cis, fig, axs[1])
            axs[1].set_title(f"Compound {multi['cis']} (cis)")
        else:
            print("Cis skipped because no frames are cis.")
        if len(trans) > CIS_TRANS_CUTOFF:
            (
                NOE_trans["md"],
                NOE_trans["lower"],
                NOE_trans["upper"],
                NOE_dist_trans,
                pmf_plot_trans,
            ) = src.noe.compute_NOE_mdtraj(
                NOE_trans_dict, t[trans],
                reweigh_type=1, slicer=trans, weight_data=weight_data
            )

            NOE_output[f"{multi['trans']}"] = NOE_trans.to_dict(orient="index")
            # Deal with ambigous NOEs
            NOE_trans = NOE_trans.explode(["md", "lower", "upper"])
            # and ambigous/multiple values
            NOE_trans = NOE_trans.explode("NMR exp")
            fig, axs[0] = src.noe.plot_NOE(NOE_trans, fig, axs[0])
            axs[0].set_title(f"Compound {multi['trans']} (trans)")
        else:
            print("Trans skipped because no frames are cis")
        src.utils.json_dump(snakemake.output.noe_result, NOE_output)
        fig.tight_layout()
        fig.savefig(snakemake.output.noe_plot)
    else:
        NOE = src.noe.read_NOE(snakemake.input.noe)
        NOE_dict = NOE.to_dict(orient="index")
        NOE["md"], NOE["lower"], NOE["upper"], _, pmf_plot = src.noe.compute_NOE_mdtraj(
            NOE_dict, t, reweigh_type=1, weight_data=weight_data
        )
        plt.close()
        # Save NOE dict
        NOE_output = {f"{compound_index}": NOE.to_dict(orient="index")}
        # save as .json file
        src.utils.json_dump(snakemake.output.noe_result, NOE_output)

        # Deal with ambigous NOEs
        NOE = NOE.explode(["md", "lower", "upper"])
        # and ambigous/multiple values
        NOE = NOE.explode("NMR exp")
        fig, ax = src.noe.plot_NOE(NOE)
#         ax.set_title(f"Compound {compound_index}. NOE", y=1.5, pad=0)
        fig.tight_layout()
        fig.savefig(snakemake.output.noe_plot, dpi=DPI)
else:
    print("cMD - no reweighted NOEs performed.")
final_figure_axs.append(sg.from_mpl(fig))
pickle_dump(snakemake.output.noe_dist, NOE_dist)
cMD - no reweighted NOEs performed.
display(NOE)
Atom 1 Atom 2 NMR exp lower bound upper bound md
0 (5, 6) (1,) 3.5 2.3 4.7 2.537114
0 (5, 6) (1,) 3.5 2.3 4.7 2.940568
1 (35,) (49,) 3.5 2.3 4.7 2.238441
2 (51,) (59,) 3.5 2.3 4.7 2.200407
3 (63,) (59,) 3.5 2.3 4.7 2.448926
... ... ... ... ... ... ...
99 (176, 177) (169,) 4.5 2.9 6.1 3.187852
99 (176, 177) (169,) 4.5 2.9 6.1 3.770265
100 (169,) (1,) 4.5 2.9 6.1 3.094532
101 (169,) (33,) 4.5 2.9 6.1 3.873004
102 (169,) (51,) 4.5 2.9 6.1 3.291381

281 rows × 6 columns

# matplotlib.rcParams.update(matplotlib.rcParamsDefault)

if snakemake.params.method != "cMD":
    if not multiple:
        pmf_plot.suptitle("NOE PMF plots")
        pmf_plot.tight_layout()
        pmf_plot.savefig(snakemake.output.noe_pmf)
        fig = pmf_plot
    else:
        # save to image data
        io_cis = io.BytesIO()
        io_trans = io.BytesIO()
        if len(cis) > CIS_TRANS_CUTOFF:
            pmf_plot_cis.savefig(io_cis, format="raw", dpi=pmf_plot_cis.dpi)
        if len(trans) > CIS_TRANS_CUTOFF:
            pmf_plot_trans.savefig(io_trans, format="raw", dpi=pmf_plot_trans.dpi)

        if len(cis) > CIS_TRANS_CUTOFF:
            io_cis.seek(0)
            img_cis = np.reshape(
                np.frombuffer(io_cis.getvalue(), dtype=np.uint8),
                newshape=(
                    int(pmf_plot_cis.bbox.bounds[3]),
                    int(pmf_plot_cis.bbox.bounds[2]),
                    -1,
                ),
            )
            io_cis.close()

        if len(trans) > CIS_TRANS_CUTOFF:
            io_trans.seek(0)
            img_trans = np.reshape(
                np.frombuffer(io_trans.getvalue(), dtype=np.uint8),
                newshape=(
                    int(pmf_plot_trans.bbox.bounds[3]),
                    int(pmf_plot_trans.bbox.bounds[2]),
                    -1,
                ),
            )
            io_trans.close()

        fig, axs = plt.subplots(2, 1)
        fig.set_size_inches(16, 30)
        if len(cis) > CIS_TRANS_CUTOFF:
            axs[0].imshow(img_cis)
            axs[0].axis("off")
            axs[0].set_title("cis")
        if len(trans) > CIS_TRANS_CUTOFF:
            axs[1].imshow(img_trans)
            axs[1].set_title("trans")
            axs[1].axis("off")
        # fig.suptitle('PMF plots. PMF vs. distance')
        fig.tight_layout()
        fig.savefig(snakemake.output.noe_pmf, dpi=DPI)
else:
    fig, ax = plt.subplots()
    ax.text(0.5, 0.5, "not applicable.")
    fig.savefig(snakemake.output.noe_pmf, dpi=DPI)
display(fig)
../_images/45750abf2112f0e2_cMD_processed_92_0.png ../_images/45750abf2112f0e2_cMD_processed_92_1.png

2.38.7. NOE-Statistics#

Following, we compute various statistical metrics to evaluate how the simulated NOEs compare to the experimental ones.

# Compute deviations of experimental NOE values to the MD computed ones
NOE_stats_keys = []
NOE_i = []
NOE_dev = {}

if multiple:
    if len(cis) > CIS_TRANS_CUTOFF:
        NOE_stats_keys.append("cis")
        NOE_i.append(NOE_cis)
    if len(trans) > CIS_TRANS_CUTOFF:
        NOE_stats_keys.append("trans")
        NOE_i.append(NOE_trans)
else:
    NOE_stats_keys.append("single")
    NOE_i.append(NOE)

for k, NOE_d in zip(NOE_stats_keys, NOE_i):
    if (NOE_d["NMR exp"].to_numpy() == 0).all():
        # if all exp values are 0: take middle between upper / lower bound as reference value
        NOE_d["NMR exp"] = (NOE_d["upper bound"] + NOE_d["lower bound"]) * 0.5

    # Remove duplicate values (keep value closest to experimental value)
    NOE_d["dev"] = NOE_d["md"] - np.abs(NOE_d["NMR exp"])
    NOE_d["abs_dev"] = np.abs(NOE_d["md"] - np.abs(NOE_d["NMR exp"]))

    NOE_d = NOE_d.sort_values("abs_dev", ascending=True)
    NOE_d.index = NOE_d.index.astype(int)
    NOE_d = NOE_d[~NOE_d.index.duplicated(keep="first")].sort_index(kind="mergesort")

    NOE_d = NOE_d.dropna()
    NOE_dev[k] = NOE_d
# Compute NOE statistics
NOE_stats = {}

for k in NOE_stats_keys:
    NOE_d = NOE_dev[k]
    NOE_stats_k = pd.DataFrame(columns=["stat", "value", "up", "low"])

    MAE, upper, lower = src.stats.compute_MAE(NOE_d["NMR exp"], NOE_d["md"])
    append = {"stat": "MAE", "value": MAE, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    MSE, upper, lower = src.stats.compute_MSE(NOE_d["dev"])
    append = {"stat": "MSE", "value": MSE, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    RMSD, upper, lower = src.stats.compute_RMSD(NOE_d["NMR exp"], NOE_d["md"])
    append = {"stat": "RMSD", "value": RMSD, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    pearsonr, upper, lower = src.stats.compute_pearsonr(NOE_d["NMR exp"], NOE_d["md"])
    append = {"stat": "pearsonr", "value": pearsonr, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    kendalltau, upper, lower = src.stats.compute_kendalltau(
        NOE_d["NMR exp"], NOE_d["md"]
    )
    append = {"stat": "kendalltau", "value": kendalltau, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    chisq, upper, lower = src.stats.compute_chisquared(NOE_d["NMR exp"], NOE_d["md"])
    append = {"stat": "chisq", "value": chisq, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    fulfilled = src.stats.compute_fulfilled_percentage(NOE_d)
    append = {"stat": "percentage_fulfilled", "value": fulfilled, "up": 0, "low": 0}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    NOE_stats[k] = NOE_stats_k
# Compute statistics for most populated cluster
if multiple:
    NOE_stats_keys = ["cis", "trans"]
    differentiation = {"cis": cis, "trans": trans}
else:
    NOE_stats_keys = ["single"]

n_cluster_traj = {}
n_cluster_percentage = {}
n_cluster_index = {}
remover = []
for k in NOE_stats_keys:
    if multiple:
        cluster_in_x = np.in1d(cluster_index, differentiation[k])
        print(cluster_in_x)
        if np.all(cluster_in_x == False):
            # No clusters found for specific cis/trans/other
            remover.append(k)
    else:
        cluster_in_x = np.ones((len(cluster_index)), dtype=bool)
    cluster_in_x = np.arange(0, len(cluster_index))[cluster_in_x]
    n_cluster_traj[k] = cluster_traj[cluster_in_x]
    n_cluster_percentage[k] = np.array(cluster_percentage)[cluster_in_x]
    n_cluster_index[k] = np.array(cluster_index)[cluster_in_x]
cluster_traj = n_cluster_traj
cluster_percentage = n_cluster_percentage
cluster_index = n_cluster_index
[NOE_stats_keys.remove(k) for k in remover]
[]
# Compute statistics for most populated cluster
NOE_dict = {}
NOE = src.noe.read_NOE(snakemake.input.noe)
NOE_n = {}
if multiple:
    NOE_trans, NOE_cis = NOE
    NOE_n["cis"] = NOE_cis
    NOE_n["trans"] = NOE_trans
    NOE_dict["cis"] = NOE_cis.to_dict(orient="index")
    NOE_dict["trans"] = NOE_trans.to_dict(orient="index")
else:
    NOE_dict["single"] = NOE.to_dict(orient="index")
    NOE_n["single"] = NOE


for k in NOE_stats_keys:
    # max. populated cluster
    # NOE = NOE_n.copy()
    max_populated_cluster_idx = np.argmax(cluster_percentage[k])
    max_populated_cluster = cluster_traj[k][max_populated_cluster_idx]
    NOE_n[k]["md"], *_ = src.noe.compute_NOE_mdtraj(NOE_dict[k], max_populated_cluster)
    # Deal with ambigous NOEs
    NOE_n[k] = NOE_n[k].explode("md")
    # and ambigous/multiple values
    NOE_n[k] = NOE_n[k].explode("NMR exp")

    # Remove duplicate values (keep value closest to experimental value)
    NOE_test = NOE_n[k]
    if (NOE_test["NMR exp"].to_numpy() == 0).all():
        # if all exp values are 0: take middle between upper / lower bound as reference value
        NOE_test["NMR exp"] = (NOE_test["upper bound"] + NOE_test["lower bound"]) * 0.5
    NOE_test["dev"] = NOE_test["md"] - np.abs(NOE_test["NMR exp"])
    NOE_test["abs_dev"] = np.abs(NOE_test["md"] - np.abs(NOE_test["NMR exp"]))

    NOE_test = NOE_test.sort_values("abs_dev", ascending=True)
    NOE_test.index = NOE_test.index.astype(int)
    NOE_test = NOE_test[~NOE_test.index.duplicated(keep="first")].sort_index(
        kind="mergesort"
    )

    # drop NaN values:
    NOE_test = NOE_test.dropna()
    # Compute metrics now
    # Compute NOE statistics, since no bootstrap necessary, do a single iteration.. TODO: could clean this up further to pass 0, then just return the value...
    RMSD, *_ = src.stats.compute_RMSD(
        NOE_test["NMR exp"], NOE_test["md"], n_bootstrap=1
    )
    MAE, *_ = src.stats.compute_MAE(NOE_test["NMR exp"], NOE_test["md"], n_bootstrap=1)
    MSE, *_ = src.stats.compute_MSE(NOE_test["dev"], n_bootstrap=1)
    fulfil = src.stats.compute_fulfilled_percentage(NOE_test)
    # insert values
    values = [MAE, MSE, RMSD, None, None, None, fulfil]
    NOE_stats[k].insert(4, "most-populated-1", values)

# If there are no cis/trans clusters, still write a column 'most-populated-1', but fill with NaN
for k in remover:
    values = [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]
    NOE_stats[k].insert(4, "most-populated-1", values)
for k in NOE_stats.keys():
    display(NOE_stats[k])
    # convert df to dict for export
    NOE_stats[k] = NOE_stats[k].to_dict()
# Save
src.utils.json_dump(snakemake.output.noe_stats, NOE_stats)
stat value up low most-populated-1
0 MAE 1.081605 1.196328 0.965127 0.944747
1 MSE -0.836484 -0.657630 0.000000 -0.518674
2 RMSD 1.237235 1.359996 1.121706 1.193707
3 pearsonr 0.412958 0.527958 0.296987 NaN
4 kendalltau 0.397457 0.495289 0.278968 NaN
5 chisq 36.053884 43.321481 29.909675 NaN
6 percentage_fulfilled 0.747573 0.000000 0.000000 0.796117
plt.rc('font', size=MEDIUM_SIZE)          # controls default text sizes
plt.rc('axes', titlesize=BIGGER_SIZE)     # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE)    # fontsize of the x and y labels
plt.rc('xtick', labelsize=MEDIUM_SIZE)    # fontsize of the tick labels
plt.rc('ytick', labelsize=MEDIUM_SIZE)    # fontsize of the tick labels
plt.rc('legend', fontsize=MEDIUM_SIZE)    # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure title


if multiple:
    fig, axs = plt.subplots(2, 1)
    if len(cis) > CIS_TRANS_CUTOFF:
        # cis
        axs[0].scatter(NOE_dev["cis"]["NMR exp"], NOE_dev["cis"]["md"])
        axs[0].set_ylabel("MD")
        axs[0].set_xlabel("Experimental NOE value")
        axs[0].axline((1.5, 1.5), slope=1, color="black")
        axs[0].set_title("Experimental vs MD derived NOE values - cis")

    if len(trans) > CIS_TRANS_CUTOFF:
        # trans
        axs[1].scatter(NOE_dev["trans"]["NMR exp"], NOE_dev["trans"]["md"])
        axs[1].set_ylabel("MD")
        axs[1].set_xlabel("Experimental NOE value")
        axs[1].axline((1.5, 1.5), slope=1, color="black")
        axs[1].set_title("Experimental vs MD derived NOE values - trans")
    fig.tight_layout()
    fig.savefig(snakemake.output.noe_stat_plot)
else:
    plt.scatter(NOE_dev["single"]["NMR exp"], NOE_dev["single"]["md"])
    if snakemake.params.method != "cMD":
        plt.scatter(
            NOE_dev["single"]["NMR exp"], NOE_dev["single"]["upper"], marker="_"
        )
        plt.scatter(
            NOE_dev["single"]["NMR exp"], NOE_dev["single"]["lower"], marker="_"
        )
    plt.ylabel("MD")
    plt.xlabel("Experimental NOE value")
    plt.axline((1.5, 1.5), slope=1, color="black")
    plt.title("Experimental vs MD derived NOE values")
    plt.tight_layout()
    plt.savefig(snakemake.output.noe_stat_plot)
    
../_images/45750abf2112f0e2_cMD_processed_99_0.png
# is the mean deviation significantly different than 0? if pvalue < 5% -> yes! We want: no! (does not deviate from exp. values)
if multiple:
    if len(cis) > CIS_TRANS_CUTOFF:
        print(stats.ttest_1samp(NOE_dev["cis"]["dev"], 0.0))
    if len(trans) > CIS_TRANS_CUTOFF:
        print(stats.ttest_1samp(NOE_dev["trans"]["dev"], 0.0))
else:
    print(stats.ttest_1samp(NOE_dev["single"]["dev"], 0.0))
Ttest_1sampResult(statistic=-9.267141644761411, pvalue=3.4076294125052256e-15)
if multiple:
    if len(cis) > CIS_TRANS_CUTOFF:
        print(stats.describe(NOE_dev["cis"]["dev"]))
    if len(trans) > CIS_TRANS_CUTOFF:
        print(stats.describe(NOE_dev["trans"]["dev"]))
else:
    print(stats.describe(NOE_dev["single"]["dev"]))
DescribeResult(nobs=103, minmax=(-2.1193248999449987, 3.3617742742090524), mean=-0.8364840487940512, variance=0.839191255579777, skewness=1.5711545960279647, kurtosis=3.7675083582841395)
# Make overview figure
plot1 = final_figure_axs[0].getroot()
plot2 = final_figure_axs[1].getroot()
plot3 = final_figure_axs[2].getroot()
plot4 = final_figure_axs[3].getroot()
plot5 = final_figure_axs[4].getroot()
if multiple:
#     # TODO: fix this!
#         sc.Figure(
#         "4039",
#         "5048",
#         sc.Panel(plot3, sc.Text("A", 0, 0, size=16, weight='bold')),
#         sc.Panel(
#             plot2,
#             sc.Text("B", "8.5cm", "0cm", size=16),
#         ).move(0,200),
#         sc.Panel(plot4, sc.Text("C", 25, 20, size=16, weight='bold')),
#         # sc.Panel(plot4, sc.Text("D", 25, 20, size=20, weight='bold')).scale(0.8).move(-200,0),
#     ).tile(2, 2).save(snakemake.output.overview_plot)
    sc.Figure(
        "4039",
        "7068", # 5048
        sc.Panel(plot2, sc.Text("A", 25, 20, size=16, weight='bold').move(-12,0)).scale(8),
        sc.Panel(plot3, sc.Text("B", 25, 20, size=16, weight='bold').move(-12,0)).scale(8),
        sc.Panel(plot4, sc.Text("C", 25, 20, size=16, weight='bold').move(-12,-24)).scale(8).move(0, -300),
        sc.Panel(sc.Text("2")),
        sc.Panel(plot5, sc.Text("D", 25, 20, size=16, weight='bold').move(-12,0)).scale(8).move(0, -1550),
        # sc.Panel(plot1, sc.Text("D", 25, 0, size=16, weight='bold')),
    ).tile(2, 3).save(snakemake.output.overview_plot)
else:
    sc.Figure(
        "4039",
        "5048", # 4039
        sc.Panel(plot2, sc.Text("A", 25, 20, size=16, weight='bold').move(-12,0)).scale(8),
        sc.Panel(plot3, sc.Text("B", 25, 20, size=16, weight='bold').move(-12,0)).scale(8),
        sc.Panel(plot4, sc.Text("C", 25, 20, size=16, weight='bold').move(-12,-24)).scale(8).move(0, 350),
        sc.Panel(sc.Text("2")),
        sc.Panel(plot5, sc.Text("D", 25, 20, size=16, weight='bold').move(-12,0)).scale(8).move(0, -250),
        # sc.Panel(plot1, sc.Text("D", 25, 0, size=16, weight='bold')),
    ).tile(2, 3).save(snakemake.output.overview_plot)
src.utils.show_svg(snakemake.output.overview_plot)
../_images/45750abf2112f0e2_cMD_processed_104_0.svg
print("Done")
Done