2.32. Analysis Notebook#

A copy of this notebook is run to analyse the molecular dynamics simulations. The type of MD simulation is specified in the Snakemake rule as a parameter, such that it is accessible via: snakemake.params.method.

There are various additional analysis steps, that are included in the notebook, but are not part of the paper. To turn these on, set the beta_run parameter to True.

There are also some commented out lines in the notebook. These are mainly for the purpose of debugging. Some of them are for interactively exploring the 3d structure of the system. These don’t work as part of the automated snakemake workflow, but can be enabled when running a notebook interactively.

#Check if we should use shortened trajectories for analysis.
if snakemake.config["shortened"]:
    print("Using shortened trajectories and dihedrals. This only works if these were created previously!")
    if not (os.path.exists(snakemake.params.traj_short) 
            and os.path.exists(snakemake.params.dihedrals_short)
            and os.path.exists(snakemake.params.dPCA_weights_MC_short)
            and os.path.exists(snakemake.params.weights_short)
           ):
        raise FileNotFoundError("Shortened trajectories and dihedrals files do not exist, but config value is set to use shortened files! Switch off the use of shortenend files and first analyse this simulation using the full trajectory!")
    else:
        use_shortened = True
else:
    use_shortened = False
# Imports
import matplotlib
import mdtraj as md
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import matplotlib.image as mpimg

# set matplotlib font sizes
SMALL_SIZE = 9
MEDIUM_SIZE = 11
BIGGER_SIZE = 13

plt.rc('font', size=MEDIUM_SIZE)          # controls default text sizes
plt.rc('axes', titlesize=BIGGER_SIZE)     # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE)    # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE)    # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE)    # fontsize of the tick labels
plt.rc('legend', fontsize=MEDIUM_SIZE)    # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure title

DPI = 600

import scipy.cluster.hierarchy
from scipy.spatial.distance import squareform
import pandas as pd

sys.path.append(os.getcwd())
import src.dihedrals
import src.pca
import src.noe
import src.Ring_Analysis
import src.stats
from src.pyreweight import reweight
from src.utils import json_load, pickle_dump
from sklearn.manifold import TSNE
from sklearn.cluster import DBSCAN
from sklearn.neighbors import NearestNeighbors
from sklearn.decomposition import PCA
import nglview as nv
from rdkit import Chem
from rdkit.Chem.Draw import IPythonConsole
import py_rdl
import seaborn as sns

IPythonConsole.molSize = (900, 300)  # (450, 150)
IPythonConsole.drawOptions.addStereoAnnotation = True
IPythonConsole.drawOptions.annotationFontScale = 1.5
import tempfile
import io
import svgutils.transform as sg
import svgutils.compose as sc
import scipy.stats as stats
from IPython.display import display, Markdown
# Can set a stride to make prelim. analysis faster. for production, use 1 (use all MD frames)
stride = int(snakemake.config["stride"])
print(f"Using stride {stride} to analyse MD simulations.")
# Perform additional analysis steps (e.g. compute structural digits)
beta_run = False

# Analysing compound
compound_index = int(snakemake.wildcards.compound_dir)
simtime = float(snakemake.wildcards.time)

# Storage for overview figure
final_figure_axs = []
Using stride 1 to analyse MD simulations.

2.32.1. Compound details#

display(Markdown(f"This notebook refers to compound {compound_index}."))

compound = json_load(snakemake.input.parm)
multi = compound.multi
if multi:
    display(Markdown(
        "According to the literature reference, there are two distinct structures in solution."
    ))
else:
    display(Markdown(
        "According to the literature reference, there is only one distinct structure in solution."
    ))
display(Markdown(f"""The sequence of the compound is **{compound.sequence}**. \n
A 2d structure of the compound is shown below."""))

This notebook refers to compound 62.

According to the literature reference, there is only one distinct structure in solution.

The sequence of the compound is E(DVA)DP(DGL)(DHI)(DPR)N(DAL)(DPR).

A 2d structure of the compound is shown below.

2.32.2. Simulation details#

# TODO: change notebook that it supports use of a shortened trajectory file
# only load protein topology
topo = md.load_frame(snakemake.input.traj, 0, top=snakemake.input.top)
protein = topo.topology.select("protein or resname ASH")
display(Markdown(f"The following atom numbers are part of the protein: {protein}"))

The following atom numbers are part of the protein: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141]

# Stereo check 1-frame trajectory to tmp-pdb file
t_stereo_check = topo.restrict_atoms(topo.topology.select("protein or resname ASH"))
tf = tempfile.NamedTemporaryFile(delete=False)
# tf.name
t_stereo_check.save_pdb(tf.name)

# Get reference mol
mol_ref = Chem.MolFromMol2File(
    snakemake.input.ref_mol,
    removeHs=False,
)

# Get 1st frame pdb from tempfile
post_eq_mol = Chem.MolFromPDBFile(
    tf.name,
    removeHs=False,
    sanitize=False,
)

# could compare smiles to automate the stereo-check. Problem: mol2 reference file has wrong bond orders
# (amber does not write those correctly). The ref-pdb file cannot be read b/c geometry is not optimized.
# This leads to funky valences in rdkit. The post-eq pdb file reads fine but then charges etc. dont match
# with the reference (b/c of wrong bond orders). But can manually check that all stereocentres are correct (below)
Chem.CanonSmiles(Chem.MolToSmiles(post_eq_mol)) == Chem.CanonSmiles(
    Chem.MolToSmiles(mol_ref)
)
display(Markdown("""Following we compare an annotated 2d structure of the compound's starting topology, with the 
                 topology post equilibration"""))

Following we compare an annotated 2d structure of the compound's starting topology, with the topology post equilibration

post_eq_mol.RemoveAllConformers()
display(Markdown("2d structure of the compound post equilibration:"))
post_eq_mol

2d structure of the compound post equilibration:

../_images/474e13185acfa1a8_cMD_processed_12_1.png
mol_ref.RemoveAllConformers()
display(Markdown("2d structure of the compound reference topology:"))
mol_ref

2d structure of the compound reference topology:

../_images/474e13185acfa1a8_cMD_processed_13_1.png
# load trajectory
display(Markdown("Now we load the MD trajectory."))
if not use_shortened:
    t = md.load(
        snakemake.input.traj, top=snakemake.input.top, atom_indices=protein, stride=stride
    )  # added strideint for GaMD 2k
    print(t)
    # Remove solvent from trajectory
    t = t.restrict_atoms(t.topology.select("protein or resname ASH"))
    t = t.superpose(t, 0)

    # for GaMD, skip equlibration...
    if snakemake.params.method == "GaMD":
        weight_lengths = np.loadtxt(snakemake.input.weights)
        weight_lengths = int(len(weight_lengths))
        frames_start = int(t.n_frames - weight_lengths)
        t = t[int(frames_start / stride) :]  # added 13000 instead of 26000 for 2k
    else:
        frames_start = 0
    print(t)
else:
    stride = 1  # set stride to 1 for shortened files!
    t = md.load(
        snakemake.params.traj_short, top=snakemake.input.top, atom_indices=protein, stride=1
    )  # added strideint for GaMD 2k
    t = t.restrict_atoms(t.topology.select("protein or resname ASH"))
    t = t.superpose(t, 0)

Now we load the MD trajectory.

<mdtraj.Trajectory with 500000 frames, 142 atoms, 10 residues, and unitcells>
<mdtraj.Trajectory with 500000 frames, 142 atoms, 10 residues, and unitcells>

The simulation type is cMD, 2000 ns. The simulation was performed in H2O.

There are a total of 500000 frames available to analyse.

# Create a short trajectory & weights if working with the full trajectory
if not use_shortened:
    # determine stride to get 10k frames:
    stride_short = int(t.n_frames / 10000)
    if stride_short == 0:
        stride_short = 1

    # save short trajectory to file
    t[::stride_short].save_netcdf(snakemake.params.traj_short)
    
    # load weights for GaMD
    if snakemake.params.method != "cMD":
        weight_data = np.loadtxt(snakemake.input.weights)
        weight_data = weight_data[::stride]
        #create shortened weights
        np.savetxt(snakemake.params.weights_short, weight_data[::stride_short])
else:
    # load shortened weights for GaMD
    if snakemake.params.method != "cMD":
        weight_data = np.loadtxt(snakemake.params.weights_short)

# this determines a cutoff for when we consider cis/trans conformers separately.
# only relevant if 2 sets of NOE values present.
# t.n_frames / 1000 -> 0.1% of frames need to be cis/trans to consider both forms.
CIS_TRANS_CUTOFF = int(t.n_frames / 1000)

However, for some of the analysis steps below, only 1% of these frames have been used to ensure better rendering in the browser.

Loading BokehJS ...

2.32.3. Convergence of the simulation#

2.32.3.1. RMSD#

To check for convergence of the simulation, we can look at the root mean squared deviation of the atomic positions over the course of the simulation.

# compute rmsd for different atom types
rmsds = md.rmsd(t, t, 0) * 10
bo = topo.topology.select("protein and (backbone and name O)")
ca = topo.topology.select("name CA")
rmsds_ca = md.rmsd(t, t, 0, atom_indices=ca) * 10  # Convert to Angstrom!
rmsds_bo = md.rmsd(t, t, 0, atom_indices=bo) * 10  # Convert to Angstrom!

rmsds = rmsds[::100]
rmsds_ca = rmsds_ca[::100]
rmsds_bo = rmsds_bo[::100]

# Create x data (simulation time)
x = [x / len(rmsds_ca) * simtime for x in range(0, len(rmsds_ca))]

# Make plot
fig = figure(
    plot_width=600,
    plot_height=400,
    title="RMSD of different atom types",
    x_axis_label="Simulation time in ns",
    y_axis_label="RMSD in angstrom, relative to first frame",
    sizing_mode="stretch_width",
    toolbar_location=None,
)
fig.line(
    x,
    rmsds,
    line_width=2,
    line_alpha=0.6,
    legend_label="all atoms",
    color="black",
    muted_alpha=0.1,
)
fig.line(
    x,
    rmsds_ca,
    line_width=2,
    line_alpha=0.6,
    legend_label="C-alpha atoms",
    color="blue",
    muted_alpha=0.1,
)
fig.line(
    x,
    rmsds_bo,
    line_width=2,
    line_alpha=0.6,
    legend_label="backbone O atoms",
    color="orange",
    muted_alpha=0.1,
)
fig.legend.click_policy = "mute"  #'hide'
show(fig)
# TODO: save rmsds as png, instead of manual screenshot https://docs.bokeh.org/en/latest/docs/user_guide/export.html

2.32.3.2. Dihedral angles#

if multi is not None:
    multi = {v: k for k, v in multi.items()}
    multiple = True
    distinction = compound.distinction
    print("Multiple compounds detected")
else:
    multiple = False
    pickle_dump(snakemake.output.multiple, multiple)
if multiple:  # if Compound.cistrans:
    ca_c = t.top.select(f"resid {distinction[0]} and name CA C")
    n_ca_next = t.top.select(f"resid {distinction[1]} and name N CA")
    omega = np.append(ca_c, n_ca_next)
    t_omega_rad = md.compute_dihedrals(t, [omega])
    t_omega_deg = np.abs(np.degrees(t_omega_rad))
    plt.plot(t_omega_deg)
    plt.hlines(90, 0, t.n_frames, color="red")
    plt.xlabel("Frames")
    plt.ylabel("Omega 0-1 [°]")
    plt.title(f"Dihedral angle over time. Compound {compound_index}")
    cis = np.where(t_omega_deg <= 90)[0]
    trans = np.where(t_omega_deg > 90)[0]
    pickle_dump(snakemake.output.multiple, (cis, trans))
    # t[trans]
# TODO: save dihedrals as png
resnames = []
for i in range(0, t.n_residues):
    resnames.append(t.topology.residue(i))

*_, omega = src.dihedrals.getDihedrals(t)
omega_deg = np.abs(np.degrees(omega))

omega_deg = omega_deg[::100]

simtime = float(snakemake.wildcards.time)

colors = src.utils.color_cycle()

# Create x data (simulation time)
x = [x / len(omega_deg) * simtime for x in range(0, len(omega_deg))]

# Make plot
fig = figure(
    plot_width=600,
    plot_height=400,
    title="Omega dihedral angles over time",
    x_axis_label="Simulation time in ns",
    y_axis_label="Dihedral angle in ˚",
    sizing_mode="stretch_width",
    toolbar_location=None,
)

for res, i, col in zip(resnames, range(len(resnames)), colors):
    fig.line(
        x,
        omega_deg[:, i],
        line_width=2,
        line_alpha=0.6,
        legend_label=str(res),
        color=col,
        muted_alpha=0.1,
    )

fig.legend.click_policy = "mute"  #'hide'
show(fig)
# Compute dihedral angles [Phi] [Psi] [Omega]
phi, psi, omega = src.dihedrals.getDihedrals(t)
if beta_run:
    # Print mean of dihedral angles [Phi] [Psi] [Omega]
    print(
        np.degrees(src.dihedrals.angle_mean(phi)),
        np.degrees(src.dihedrals.angle_mean(psi)),
        np.degrees(src.dihedrals.angle_mean(omega)),
    )
# Plot ramachandran plot for each amino acid
if beta_run:
    fig, axs = plt.subplots(int(np.ceil(len(phi.T) / 5)), 5, sharex="all", sharey="all")
    fig.set_size_inches(16, 4)
    motives = []
    i = 0
    for phi_i, psi_i in zip(np.degrees(phi.T), np.degrees(psi.T)):
        weights_phi_psi = reweight(
            np.column_stack((phi_i, psi_i)),
            None,
            "amdweight_MC",
            weight_data,
        )
        axs.flatten()[i].scatter(
            phi_i, psi_i, s=0.5, c=weights_phi_psi, vmin=0, vmax=8, cmap="Spectral_r"
        )
        axs.flatten()[i].set_title(i)
        motives.append(src.dihedrals.miao_ramachandran(phi_i, psi_i))
        i += 1
    fig.show()
if beta_run:
    # compute most common motives
    combined_motives = np.column_stack((motives))
    combined_motives = ["".join(test) for test in combined_motives]
    from collections import Counter

    c = Counter(combined_motives)
    motive_percentage = [
        (i, c[i] / len(combined_motives) * 100.0) for i, count in c.most_common()
    ]
    # 10 most common motives and percentage of frames
    print(motive_percentage[:10])
if beta_run:
    # Get indicies of most common motives
    combined_motives = np.array(combined_motives)
    idxs = []
    values = [i[0] for i in c.most_common(10)]
    for i, v in enumerate(values):
        idxs.append(np.where(combined_motives == v)[0])

2.32.4. Dimensionality Reductions#

The simulation trajectories contain the positions of all atoms. This high dimensional data (3*N_atoms) is too complicated to analyse by itself. To get a feeling of the potential energy landscape we need to apply some kind of dimensionality reduction. Here, we apply the PCA (Principal Component Analysis) method.

2.32.4.1. Cartesian PCA#

Details about cartesian PCA

c_pca, reduced_cartesian = src.pca.make_PCA(t, "cartesian")

# reweighting:
if snakemake.params.method == "cMD":
    c_weights = reweight(reduced_cartesian, None, "noweight")
else:
    c_weights = reweight(
        reduced_cartesian, None, "amdweight_MC", weight_data
    )

if multiple:
    fig, axs = plt.subplots(1, 2, sharex="all", sharey="all", figsize=(6.7323, 3.2677))
    axs[0] = src.pca.plot_PCA(
        reduced_cartesian,
        "cartesian",
        compound_index,
        c_weights,
        "Energy [kcal/mol]",
        fig,
        axs[0],
        explained_variance=c_pca.explained_variance_ratio_[:2],
    )
    axs[1] = src.pca.plot_PCA_citra(
        reduced_cartesian[cis],
        reduced_cartesian[trans],
        "cartesian",
        compound_index,
        [multi["cis"] + " (cis)", multi["trans"] + " (trans)"],
        fig,
        axs[1],
    )

else:
    fig, ax = plt.subplots(figsize=(3.2677, 3.2677))
    ax = src.pca.plot_PCA(
        reduced_cartesian,
        "cartesian",
        compound_index,
        c_weights,
        "Energy [kcal/mol]",
        fig,
        ax,
        explained_variance=c_pca.explained_variance_ratio_[:2],
    )
../_images/474e13185acfa1a8_cMD_processed_33_0.png

2.32.4.2. Pairwise distances PCA#

pd_pca, reduced_pd = src.pca.make_PCA(t, "pairwise_N_O")

# reweighting:
if snakemake.params.method == "cMD":
    p_weights = reweight(reduced_pd, None, "noweight")
else:
    p_weights = reweight(
        reduced_pd, None, "amdweight_MC", weight_data
    )

if multiple:
    fig, axs = plt.subplots(1, 2, sharex="all", sharey="all", figsize=(6.7323, 3.2677))
    axs[0] = src.pca.plot_PCA(
        reduced_pd,
        "pairwise",
        compound_index,
        p_weights,
        "Energy [kcal/mol]",
        fig,
        axs[0],
        explained_variance=pd_pca.explained_variance_ratio_[:2],
    )
    axs[1] = src.pca.plot_PCA_citra(
        reduced_pd[cis],
        reduced_pd[trans],
        "pairwise",
        compound_index,
        [multi["cis"] + " (cis)", multi["trans"] + " (trans)"],
        fig,
        axs[1],
    )
else:
    fig, ax = plt.subplots(figsize=(3.2677, 3.2677))
    ax = src.pca.plot_PCA(
        reduced_pd,
        "pairwise",
        compound_index,
        p_weights,
        "Energy [kcal/mol]",
        fig,
        ax,
        explained_variance=pd_pca.explained_variance_ratio_[:2],
    )
../_images/474e13185acfa1a8_cMD_processed_35_0.png

2.32.4.3. Dihedral PCA#

pca_d, reduced_dihedrals = src.pca.make_PCA(t, "dihedral")
reduced_dihedrals_full = src.dihedrals.getReducedDihedrals(t)

# save pca object & reduced dihedrals
pickle_dump(snakemake.output.dPCA, pca_d)
pickle_dump(snakemake.output.dihedrals, reduced_dihedrals_full)
if not use_shortened:
    pickle_dump(snakemake.params.dihedrals_short, reduced_dihedrals_full[::stride_short])

# reweighting:
if snakemake.params.method == "cMD":
    d_weights = reweight(reduced_dihedrals, None, "noweight")
else:
    d_weights = reweight(
        reduced_dihedrals, None, "amdweight_MC", weight_data
    )
if multiple:
    fig, axs = plt.subplots(1, 2, sharex="all", sharey="all", figsize=(6.7323, 3.2677))
    axs[0] = src.pca.plot_PCA(
        reduced_dihedrals,
        "dihedral",
        compound_index,
        d_weights,
        "Energy [kcal/mol]",
        fig,
        axs[0],
        explained_variance=pca_d.explained_variance_ratio_[:2],
    )
    axs[1] = src.pca.plot_PCA_citra(
        reduced_dihedrals[cis],
        reduced_dihedrals[trans],
        "dihedral",
        compound_index,
        [multi["cis"] + " (cis)", multi["trans"] + " (trans)"],
        fig,
        axs[1],
    )
    fig.savefig(snakemake.output.pca_dihe, dpi=DPI)
else:
    fig, ax = plt.subplots(figsize=(3.2677, 3.2677))
    ax = src.pca.plot_PCA(
        reduced_dihedrals,
        "dihedral",
        compound_index,
        d_weights,
        "Energy [kcal/mol]",
        fig,
        ax,
        explained_variance=pca_d.explained_variance_ratio_[:2],
    )
    fig.tight_layout()
    fig.savefig(snakemake.output.pca_dihe, dpi=DPI)
final_figure_axs.append(sg.from_mpl(fig, savefig_kw={"dpi": DPI}))
pickle_dump(snakemake.output.dPCA_weights_MC, d_weights)
if not use_shortened:
    pickle_dump(snakemake.params.dPCA_weights_MC_short, d_weights[::stride_short])
../_images/474e13185acfa1a8_cMD_processed_37_0.png
if beta_run:
    # Plot structural digits on top of dPCA
    fig, axs = plt.subplots(2, 5, sharex="all", sharey="all")
    fig.set_size_inches(12, 8)
    for i in range(10):
        axs.flatten()[i] = src.pca.plot_PCA(
            reduced_dihedrals,
            "dihedral",
            compound_index,
            d_weights,
            "Energy [kcal/mol]",
            fig,
            axs.flatten()[i],
            cbar_plot="nocbar",
            explained_variance=pca_d.explained_variance_ratio_[:2],
        )
        axs.flatten()[i].scatter(
            reduced_dihedrals[idxs[i]][:, 0],
            reduced_dihedrals[idxs[i]][:, 1],
            label=values[i],
            s=0.2,
            marker=".",
            color="black",
        )
        axs.flatten()[i].set_title(f"{values[i]}: {motive_percentage[i][1]:.2f}%")
    fig.tight_layout()

2.32.4.4. TSNE#

# TSNE dimensionality reduction
# TSNE
if not use_shortened:
    plot_stride = 100
else:
    plot_stride = 1
cluster_stride = plot_stride  # 125 previously
dihe = src.dihedrals.getReducedDihedrals(t)
tsne = TSNE(n_components=2, verbose=0, perplexity=50, n_iter=2000, random_state=42)
tsne_results = tsne.fit_transform(dihe[::cluster_stride, :])  # 250
plt.scatter(tsne_results[:, 0], tsne_results[:, 1])
plt.xlabel("t-SNE dimension 1")
plt.ylabel("t-SNE dimension 2")
plt.show()
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/sklearn/manifold/_t_sne.py:783: FutureWarning: The default initialization in TSNE will change from 'random' to 'pca' in 1.2.
  FutureWarning,
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/sklearn/manifold/_t_sne.py:793: FutureWarning: The default learning rate in TSNE will change from 200.0 to 'auto' in 1.2.
  FutureWarning,
../_images/474e13185acfa1a8_cMD_processed_41_1.png

2.32.4.5. Shape analysis - principal moments of inertia#

inertia_tensor = md.compute_inertia_tensor(t)
principal_moments = np.linalg.eigvalsh(inertia_tensor)

# Compute normalized principal moments of inertia
npr1 = principal_moments[:, 0] / principal_moments[:, 2]
npr2 = principal_moments[:, 1] / principal_moments[:, 2]
mol_shape = np.stack((npr1, npr2), axis=1)

# Reweighting
if snakemake.params.method == "cMD":
    mol_shape_weights = reweight(mol_shape, None, "noweight")
else:
    mol_shape_weights = reweight(
        mol_shape, None, "amdweight_MC", weight_data
    )

# save
pickle_dump(snakemake.output.NPR_shape_data, mol_shape)
pickle_dump(snakemake.output.NPR_shape_weights, mol_shape_weights)
# Plot
x = mol_shape[:, 0]
y = mol_shape[:, 1]
v = mol_shape_weights
# create a triangulation out of these points
T = tri.Triangulation(x, y)

fig, ax = plt.subplots(figsize=(3.2677, 3.2677))

# plot the contour
# plt.tricontourf(x,y,T.triangles,v)
scat = ax.scatter(
    mol_shape[:, 0],
    mol_shape[:, 1],
    s=0.5,
    c=mol_shape_weights,
    cmap="Spectral_r",
    vmin=0,
    vmax=8,
    rasterized=True,
)

# create the grid
corners = np.array([[1, 1], [0.5, 0.5], [0, 1]])
triangle = tri.Triangulation(corners[:, 0], corners[:, 1])

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
outline = refiner.refine_triangulation(subdiv=0)

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
trimesh = refiner.refine_triangulation(subdiv=2)

# plotting the mesh
ax.triplot(trimesh, "--", color="grey")
ax.triplot(outline, "k-")
ax.set_xlabel(r"$I_{1}/I_{3}$")
ax.set_ylabel("$I_{2}/I_{3}$")
ax.text(0, 1.01, "rod")
ax.text(0.75, 1.01, "sphere")
ax.text(0.52, 0.48, "disk")
ax.set_ylim(0.45, 1.05)  # 0.6
ax.set_xlim(-0.05, 1.08) # 1.13
ax.set_aspect(1.88)  # 1.13 / 0.6
ax.set_title('Shape analysis')

colorbar = fig.colorbar(scat, label="Energy [kcal/mol]", fraction=0.046, pad=0.04)

fig.tight_layout()
fig.savefig(snakemake.output.NPR_shape_plot, dpi=DPI)
# final_figure_axs.append(sg.from_mpl(fig, savefig_kw={"dpi": DPI}))
../_images/474e13185acfa1a8_cMD_processed_44_0.png

2.32.4.6. Cremer pople analysis#

# load topology reference
# mol_ref = Chem.MolFromPDBFile(pdb_amber, removeHs=False, proximityBonding=True) #removeHs=True, proximityBonding=True)
mol_ref = Chem.MolFromMol2File(
    snakemake.input.ref_mol,
    removeHs=False,
)
mol_ref.RemoveAllConformers()
display(Markdown("Topology Reference:"))
mol_ref

Topology Reference:

../_images/474e13185acfa1a8_cMD_processed_50_1.png
mol_ref.GetNumAtoms() == t.n_atoms
True
# Get Bond Set
bonds = []
for bond in mol_ref.GetBonds():
    bonds.append((bond.GetBeginAtom().GetIdx(), bond.GetEndAtom().GetIdx()))

cremerpople_store = []

data = py_rdl.Calculator.get_calculated_result(bonds)

ring_length = []
for urf in data.urfs:
    rcs = data.get_relevant_cycles_for_urf(urf)
    for rc in rcs:
        ring_length.append(
            len(src.Ring_Analysis.Rearrangement(mol_ref, list(rc.nodes)))
        )
max_ring = ring_length.index(max(ring_length))

# for urf in data.urfs:
urf = data.urfs[max_ring]
rcs = data.get_relevant_cycles_for_urf(urf)
for rc in rcs:
    ringloop = src.Ring_Analysis.Rearrangement(
        mol_ref, list(rc.nodes)
    )  # rearrange the ring atom order
    # src.Ring_Analysis.CTPOrder(mol_ref, list(rc.nodes), n_res=t.n_residues) ## this does not work...
    coord = t.xyz[:, ringloop]
    for i in range(t.n_frames):
        ccoord = src.Ring_Analysis.Translate(coord[i])
        qs, angle = src.Ring_Analysis.GetRingPuckerCoords(
            ccoord
        )  # get cremer-pople parameters
        qs.extend([abs(x) for x in angle])
        cremerpople_store.append(qs)  # flatten tuple/list to just 1d list...
        # coord = np.array([mol0.GetConformer(1).GetAtomPosition(atom) for atom in ringloop]) # get current ring atom coordinates
        # ccoord = RA.Translate(coord) # translate ring with origin as cetner
        # cremerpople = RA.GetRingPuckerCoords(ccoord) # get cremer-pople parameters

cremerpople_store = np.array(cremerpople_store)
# from sklearn.preprocessing import normalize

pca = PCA(n_components=2)
pca_input = cremerpople_store.reshape(t.n_frames, len(qs))
# normalize(cremerpople_store.reshape(t.n_frames, len(qs)))

cp_reduced_output = pca.fit_transform(pca_input)

if snakemake.params.method == "cMD":
    cp_weights = reweight(cp_reduced_output, None, "noweight")
else:
    cp_weights = reweight(
        cp_reduced_output, None, "amdweight_MC", weight_data
    )

ax = src.pca.plot_PCA(
    cp_reduced_output,
    "CP",
    compound_index,
    cp_weights,
    explained_variance=pca.explained_variance_ratio_[:2],
)

if multiple:
    src.pca.plot_PCA_citra(
        cp_reduced_output[cis],
        cp_reduced_output[trans],
        "CP",
        compound_index,
        label=None,
        fig=None,
        ax=None,
    )
../_images/474e13185acfa1a8_cMD_processed_54_0.png

2.32.4.7. Comparison#

# produce a shared datasource with shared labels
if not use_shortened:
    plot_stride = 100
else:
    plot_stride = 1
reduced_dihedrals_t = reduced_dihedrals[::plot_stride]
reduced_pd_t = reduced_pd[::plot_stride]
mol_shape_t = mol_shape[::plot_stride]

# Either show cremer pople, or show shapes
show_cremer_pople = False

if show_cremer_pople:
    crepop_t = cp_reduced_output[::plot_stride]
    tmp_dict = {
        "dh_pc1": reduced_dihedrals_t[:, 0],
        "dh_pc2": reduced_dihedrals_t[:, 1],
        "pd_pc1": reduced_pd_t[:, 0],
        "pd_pc2": reduced_pd_t[:, 1],
        "tsne1": tsne_results[:, 0],
        "tsne2": tsne_results[:, 1],
        "cp1": crepop_t[:, 0],
        "cp2": crepop_t[:, 1],
    }
else:
    tmp_dict = {
        "dh_pc1": reduced_dihedrals_t[:, 0],
        "dh_pc2": reduced_dihedrals_t[:, 1],
        "pd_pc1": reduced_pd_t[:, 0],
        "pd_pc2": reduced_pd_t[:, 1],
        "tsne1": tsne_results[:, 0],
        "tsne2": tsne_results[:, 1],
        "npr1": mol_shape_t[:, 0],
        "npr2": mol_shape_t[:, 1],
    }
df = pd.DataFrame(tmp_dict)
source = ColumnDataSource(data=df)
# Linked plots in different representations
from bokeh.io import output_file, show
from bokeh.layouts import gridplot
from bokeh.models import ColumnDataSource, Label, LabelSet
from bokeh.plotting import figure
from bokeh.models import BooleanFilter, CDSView

TOOLS = "box_select,lasso_select,reset"

# create a new plot and add a renderer
left = figure(tools=TOOLS, plot_width=300, plot_height=300, title="Dihedral PCA")
left.dot("dh_pc1", "dh_pc2", source=source, selection_color="firebrick")

# create another new plot, add a renderer that uses the view of the data source
right = figure(
    tools=TOOLS, plot_width=300, plot_height=300, title="Pairwise NO distances"
)
right.dot("pd_pc1", "pd_pc2", source=source, selection_color="firebrick")

rightr = figure(
    tools=TOOLS, plot_width=300, plot_height=300, title="TSNE (of dihedral angles)"
)
rightr.dot("tsne1", "tsne2", source=source, selection_color="firebrick")

if show_cremer_pople:
    rightrr = figure(tools=TOOLS, plot_width=300, plot_height=300, title="Cremer-Pople")
    rightrr.dot("cp1", "cp2", source=source, selection_color="firebrick")
else:
    rightrr = figure(tools=TOOLS, plot_width=300, plot_height=300, title="PMI")
    rightrr.dot("npr1", "npr2", source=source, selection_color="firebrick")
    rightrr.line([0.5, 0, 1, 0.5], [0.5, 1, 1, 0.5], line_width=2, color="black")
    rightrr.line(
        [0.45, -0.05, 1.05, 0.45],
        [0.4, 1.1, 1.1, 0.4],
        line_width=2,
        color="white",
        line_alpha=0,
    )

    triangle = ColumnDataSource(
        data=dict(x=[0, 0.83, 0.44], y=[1, 1, 0.45], names=["rod", "sphere", "disk"])
    )

    labels = LabelSet(
        x="x",
        y="y",
        text="names",
        x_offset=0,
        y_offset=0,
        source=triangle,
        render_mode="canvas",
    )

    rightrr.add_layout(labels)

p = gridplot([[left, right, rightr, rightrr]], sizing_mode="stretch_width")
show(p)

2.32.5. DBSCAN-Clustering#

The following section provides details about the performed DBSCAN clustering. Detailed plots about parameter derivation for the clustering are hidden, but can be revealed.

# Derive epsilon for DBSCAN-clustering from data: epsilon = max distance between nearest neighbors
nbrs = NearestNeighbors(n_neighbors=2).fit(tsne_results)
distances, indices = nbrs.kneighbors(tsne_results)
epsilon = distances.max()
distances = np.sort(distances, axis=0)
distances = distances[:, 1]
plt.plot(distances)
plt.title("NN-distances in tsne plot")
plt.ylabel("NN-distance")
plt.show()
../_images/474e13185acfa1a8_cMD_processed_61_0.png
# Perform DBSCAN-clustering with varying min_samples parameter
num_clusters = []
num_noise = []
for i in range(0, 200, 1):
    clustering = DBSCAN(eps=epsilon, min_samples=i).fit(tsne_results)
    labels = clustering.labels_
    n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
    n_noise = list(labels).count(-1)
    num_clusters.append(n_clusters)
    num_noise.append(n_noise)

# Drop all points following the first detection of 0 clusters
num_clusters = np.array(num_clusters)
cutoff = np.argmin(num_clusters > 0)
num_clusters = num_clusters[:cutoff]
# print(num_clusters)

x = np.arange(0, len(num_clusters))
# Fit polynomial to detect right-most plateau
if x.size > 0:
    mymodel = np.poly1d(np.polyfit(x, num_clusters, 8))

    deriv = mymodel.deriv()
    roots = deriv.roots

    # discard complex roots
    r_roots = roots[np.isreal(roots)].real

    # discard negative values
    r_roots = r_roots[r_roots >= 0]

    # discard values greater than x.max()
    r_roots = r_roots[r_roots <= x.max() - 3]

    # Take largest root
    if r_roots != []:
        min_samples = int(r_roots.max())
        print(f"min_samples = {min_samples} was selected as parameter for clustering")
    else:
        min_samples = 15
        print(
            "Caution! min samples parameter was selected as fixed value b/c automatic determination failed. specify the parameter manually in the config!"
        )
else:
    min_samples = 15
# If config overrides, use config value:
if snakemake.wildcards.index in snakemake.config["cluster_conf"]:
    min_samples = int(snakemake.config["cluster_conf"][snakemake.wildcards.index])
    print(
        f"Override: Use min_samples={min_samples} instead of the above determined parameter"
    )
min_samples = 74 was selected as parameter for clustering
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/ipykernel_launcher.py:18: DeprecationWarning: elementwise comparison failed; this will raise an error in the future.
# Alternative: determine min_samples parameter by deciding for a fix fraction of points to classify as noise
# set cutoff as threshold percent of noise
threshhold = 0.05
num_noise = np.array(num_noise)
min_samples = np.argmin(num_noise < len(tsne_results) * threshhold)
# noise_cutoff
# min_samples = 8
display(f"Override: Use min_samples={min_samples} instead of the above determined parameter")
'Override: Use min_samples=43 instead of the above determined parameter'
plt.scatter(x, num_clusters, label="clustering with different min_sample parm.")
if x.size > 0:
    plt.plot(x, mymodel(x), label="poly-fit")
    plt.vlines(
        min_samples,
        2,
        num_clusters.max(),
        color="red",
        label="selected min_sample paramter",
    )
    plt.plot(x, deriv(x), label="derivative of poly-fit")
plt.legend(loc="lower left")
plt.title("Determining min_samples parameter for clustering")
plt.xlabel("min_samples parameter")
plt.ylabel("Number of clusters observed")
plt.savefig(snakemake.output.cluster_min_samp, dpi=DPI)
../_images/474e13185acfa1a8_cMD_processed_65_0.png
plt.plot(num_noise, label="Number of points classified as noise")
plt.xlabel("min_samples parameter")
plt.ylabel("Number of points classified as noise")
plt.title("Number of points classified as noise")
plt.show()
../_images/474e13185acfa1a8_cMD_processed_66_0.png
# Perform clustering for selected min_samples parameter
clustering = DBSCAN(eps=epsilon, min_samples=min_samples).fit(tsne_results)

threshhold = 0.01  # 0.05

n_clusters = len(set(clustering.labels_)) - (1 if -1 in clustering.labels_ else 0)
print(f"There are {n_clusters} clusters")

cluster_points = []
cluster_label_filter = []
cluster_percentage = []

cluster_labels_sorted_by_population = list(dict.fromkeys(sorted(clustering.labels_, key=list(clustering.labels_).count, reverse=True)))

plt.figure(figsize=(3.2677, 3.2677))
for cluster in cluster_labels_sorted_by_population:
    if cluster != -1:
        if len(clustering.labels_[clustering.labels_ == cluster]) >= threshhold * len(
            clustering.labels_
        ):
            clus_points = tsne_results[clustering.labels_ == cluster]
            plt.plot(
                clus_points[:, 0],
                clus_points[:, 1],
                marker=".",
                linewidth=0,
                label=f"Cluster {cluster}",
            )
            percentage = len(clustering.labels_[clustering.labels_ == cluster]) / len(
                clustering.labels_
            )
            plt.text(
                x=np.mean(clus_points[:, 0]),
                y=np.mean(clus_points[:, 1]),
                s=f"{cluster}: {percentage*100:0.2f}%",
                verticalalignment="center",
                horizontalalignment="center",
            )
            print(
                f"Cluster {cluster} makes up more than {threshhold * 100}% of points. ({percentage * 100:0.2f} % of total points)"
            )
            cluster_percentage.append(percentage)
            cluster_points.append(clustering.labels_ == cluster)
            cluster_label_filter.append(cluster)
        else:
            clus_points = tsne_results[clustering.labels_ == cluster]
            plt.plot(
                clus_points[:, 0],
                clus_points[:, 1],
                marker=".",
                linewidth=0,
                label=f"Cluster {cluster}",
                alpha=0.1,
            )
            percentage = len(clustering.labels_[clustering.labels_ == cluster]) / len(
                clustering.labels_
            )
            print(
                f"Exlude Cluster {cluster} is less than {threshhold*100}% of points. ({percentage * 100:0.2f} % of total points)"
            )
            plt.plot
    else:
        clus_points = tsne_results[clustering.labels_ == cluster]
        plt.plot(
            clus_points[:, 0],
            clus_points[:, 1],
            marker=".",
            linewidth=0,
            label=f"Noise",
            alpha=0.1,
            color="grey",
        )

        percentage = len(clustering.labels_[clustering.labels_ == cluster]) / len(
            clustering.labels_
        )
        print(f"Noise makes up {percentage * 100:0.2f} % of total points.")

# Shrink current axis by 20%

# plt.legend(loc="center right", bbox_to_anchor=(1.3,0.25))
plt.title(f"Clusters in t-SNE. \n Label: Cluster no. : % of total")
plt.xlabel("t-SNE dimension 1")
plt.ylabel("t-SNE dimension 2")
plt.tight_layout()
plt.savefig(snakemake.output.cluster_plot, dpi=DPI)
There are 14 clusters
Cluster 0 makes up more than 1.0% of points. (29.28 % of total points)
Cluster 5 makes up more than 1.0% of points. (10.76 % of total points)
Cluster 6 makes up more than 1.0% of points. (8.92 % of total points)
Cluster 3 makes up more than 1.0% of points. (8.14 % of total points)
Cluster 13 makes up more than 1.0% of points. (6.90 % of total points)
Cluster 12 makes up more than 1.0% of points. (6.80 % of total points)
Cluster 9 makes up more than 1.0% of points. (5.74 % of total points)
Noise makes up 5.28 % of total points.
Cluster 10 makes up more than 1.0% of points. (4.92 % of total points)
Cluster 1 makes up more than 1.0% of points. (4.18 % of total points)
Cluster 2 makes up more than 1.0% of points. (2.76 % of total points)
Cluster 4 makes up more than 1.0% of points. (2.34 % of total points)
Cluster 11 makes up more than 1.0% of points. (1.92 % of total points)
Cluster 8 makes up more than 1.0% of points. (1.20 % of total points)
Exlude Cluster 7 is less than 1.0% of points. (0.86 % of total points)
../_images/474e13185acfa1a8_cMD_processed_67_1.png
plt.figure(figsize=(3.2677, 3.2677))
plt.plot(clustering.labels_, marker=1, linewidth=0)
plt.title("Clusters over time (-1: noise)")
plt.xlabel("Snapshot")
plt.ylabel("Cluster no.")
plt.savefig(snakemake.output.cluster_time, dpi=DPI)
../_images/474e13185acfa1a8_cMD_processed_68_0.png
# Find cluster points in original trajectory, compute average structure,
# then find closest (min-rmsd) cluster structure to this
reduced_ind = np.arange(0, len(dihe), cluster_stride)
reduced_g_dihe = dihe[reduced_ind, :]
cluster_min_pca = []
cluster_index = []
mol_shape_cluster = []

t0 = t[0].time
dt = t.timestep

for i, cluster_name in zip(cluster_points, cluster_label_filter):

    # cluster points in original trajectory
    indices = reduced_ind[i]
    avg_struct = np.mean(t[indices].xyz, axis=0)
    avg_t = md.Trajectory(xyz=avg_struct, topology=None)

    # compute average dihedral angles for each cluster:
    phi, psi, omega = src.dihedrals.getDihedrals(t[indices])
    print(
        np.degrees(src.dihedrals.angle_mean(phi)),
        np.degrees(src.dihedrals.angle_mean(psi)),
        np.degrees(src.dihedrals.angle_mean(omega)),
    )

    # find min-RMSD structure to the average
    rmsd = md.rmsd(t[indices], avg_t, 0)
    min_rmsd_idx = np.where(rmsd == rmsd.min())
    cluster_min = t[indices][min_rmsd_idx]
    cluster_index.append(int((cluster_min.time - t0) / dt))
    print(
        f"Cluster {cluster_name}: Closest min structure is frame {int((cluster_min.time - t0) / dt)} (time: {float(cluster_min.time)})"
    )
    # Compute dihedrals of min-RMSD cluster structure, and transform to PCA
    cluster_min = src.dihedrals.getReducedDihedrals(cluster_min)
    cluster_min_pca.append(pca_d.transform(cluster_min))
    
    # Compute shape
    inertia_tensor_cluster = md.compute_inertia_tensor(t[indices][min_rmsd_idx])
    principal_moments_cluster = np.linalg.eigvalsh(inertia_tensor_cluster)

    # Compute normalized principal moments of inertia
    npr1_cluster = principal_moments_cluster[:, 0] / principal_moments_cluster[:, 2]
    npr2_cluster = principal_moments_cluster[:, 1] / principal_moments_cluster[:, 2]
    mol_shape_cluster.append(np.stack((npr1_cluster, npr2_cluster), axis=1))
[ -82.86392   88.49105  -70.60896  -66.81909  106.84745   90.4419
   66.89674 -146.71361   65.96935   67.62346] [  -4.364922   28.931396  146.05151   158.87773    20.063198 -146.04482
 -165.27332   142.51274  -149.5372   -148.72026 ] [-179.88647  178.6873   176.83127  174.45436  178.10004 -173.86479
 -177.22346  177.55661 -177.60812 -174.90683]
Cluster 0: Closest min structure is frame 182600 (time: 730404.0)
[-79.33107  127.45673  -78.35917  -69.56566  121.48611  106.622475
  64.40157  -76.52018   73.11023   65.096596] [ 145.7264   -146.55444   140.4261    161.7555     20.963736 -137.80719
 -144.4646     -7.559766 -150.47589  -149.1017  ] [ 177.74004 -179.64786  175.91927  172.56006  178.67041 -176.0083
 -178.1238  -176.63417 -177.60274  177.7688 ]
Cluster 5: Closest min structure is frame 121600 (time: 486404.0)
[-128.17888   101.56541   -70.57852   -58.245533   86.94916    65.93441
   74.21574   -85.35511    65.79233    64.41149 ] [  25.409622    32.645016   154.88678    139.1173      -3.5485933
 -127.87913   -163.04724    141.7194    -149.77553   -160.75423  ] [-179.03934 -177.10977  174.15697 -176.93729  172.99417 -177.12944
 -172.14449  173.58188 -177.49562 -174.49101]
Cluster 6: Closest min structure is frame 499200 (time: 1996804.0)
[-72.49468  120.02016  -62.941555 -66.654564  71.57994  117.34487
  59.539234 -87.27829   70.70846   67.82886 ] [  -8.016381    42.63794    135.21349    136.93782     12.178338
  -97.00009   -134.41116      2.9395447 -126.68183   -120.24337  ] [ 174.93471  177.47093 -175.2467   175.057   -179.41531  179.37062
 -179.31389 -177.58023  169.89929 -177.01953]
Cluster 3: Closest min structure is frame 83800 (time: 335204.0)
[-77.40751   87.19311  -69.52592  -61.211853  71.19512  -53.97992
  68.35753   53.332638  73.87728   72.76399 ] [  -6.644613    35.120262   145.85417    120.79522     -5.0231586
  -63.275646  -172.22296     33.479847  -132.86606   -149.72786  ] [-179.60168  179.13974  179.29016 -175.49217  178.43494 -176.54514
 -175.12518 -177.35863 -179.89038 -170.6679 ]
Cluster 13: Closest min structure is frame 398100 (time: 1592404.0)
[ -75.654      89.2876    -68.97684   -59.612434   72.5248    -51.842308
   68.768456 -121.09072    73.13844    69.242836] [ -11.307314   28.571217  144.09778   128.91696    -6.818383  -61.703735
    9.131115   28.897442 -143.26218  -136.66553 ] [ 177.99771 -179.57846 -179.5462  -178.25877  176.01369  173.0297
 -177.09392 -175.07191  176.96848 -169.89516]
Cluster 12: Closest min structure is frame 412800 (time: 1651204.0)
[ -81.48906   -62.813736 -116.99105   -67.52442    91.8716    126.764755
   63.690006  -77.12822    75.27869    61.63427 ] [  -3.909846 -123.15828   140.19112   156.28368    17.78564  -140.0926
 -145.04417   -17.007816 -151.84126  -136.99535 ] [ 178.9621  -178.54385  179.24168  174.71191  179.57382 -178.39813
 -178.79582 -177.81996 -176.15378  176.98274]
Cluster 9: Closest min structure is frame 142500 (time: 570004.0)
[-109.59066   109.5963    -77.306015  -57.850533   76.28258   -50.997654
   69.87876   -64.900635   69.05137    63.467987] [ -14.257709   24.57953   154.11247   133.9194     -9.296445  -50.15307
 -139.29039   138.09871  -150.54993  -153.52547 ] [ 178.55942  178.63039  179.18623 -175.61838  179.83229 -177.37674
 -176.32043 -179.17873  178.67819 -172.11589]
Cluster 10: Closest min structure is frame 356300 (time: 1425204.0)
[ -80.80374   128.55975   -56.042976  -72.27616    63.750626  133.24936
   64.350525 -100.70081   133.96167    61.142204] [  -0.27024847   55.996864    133.48561     134.23177      19.104418
 -111.72178    -150.37149     -25.383003    -89.01688    -136.40062   ] [-179.35396  178.64896 -178.71313  170.54883 -176.56639 -178.40288
 -178.99884  179.06004  175.34238  175.44101]
Cluster 1: Closest min structure is frame 446400 (time: 1785604.0)
[-82.15856  110.245476 -65.04619  -68.37879   87.31254   77.50782
  72.04533  -68.779305 127.313774  62.69384 ] [  12.044642   39.552956  141.6319    149.27946    17.331123 -129.12794
 -149.6358    -35.76459   -67.7683   -138.83545 ] [-177.12302 -177.15399  177.3186   174.78813  178.6608  -177.74834
 -174.39963  174.01997 -179.29965  177.27151]
Cluster 2: Closest min structure is frame 100200 (time: 400804.0)
[-141.95647   102.103065  -86.533     -62.66367    73.17075   125.4298
   67.11826   -80.225204   98.20647    60.592407] [ 143.46152     -8.829951   129.12943    131.36398      5.0945415
  -71.32068   -148.34512     17.629967  -153.69502   -141.94133  ] [ 172.12598  175.92772 -174.65279  177.9687   177.59567 -176.19144
 -178.87346 -177.13504 -175.93423  177.9854 ]
Cluster 4: Closest min structure is frame 464300 (time: 1857204.0)
[-105.81933    78.98748   -98.30291   -56.375      78.75041   -54.088425
   63.730717  -75.373276  156.30487    66.900986] [  19.243826   22.598053  158.64085   136.79051   -15.717135  -47.768757
 -122.89392    47.53641  -155.47357  -155.13882 ] [-170.07709 -176.1437  -174.92949 -174.87589  178.98203  175.54376
  175.62993 -178.60957 -168.56087 -177.23648]
Cluster 11: Closest min structure is frame 351600 (time: 1406404.0)
[ -84.21222    88.97313   -61.708748  -64.50837    79.063416  128.40529
   61.88121  -146.578      72.90002    64.56885 ] [  -1.6255813   41.34094    145.17766    148.97218      9.691039
  -75.864845  -160.6964      78.01691   -145.13072   -137.07866  ] [ 175.48174  179.06773 -178.13246  178.36816  176.46783 -173.37085
 -177.89006 -172.94469  174.28639 -173.67062]
Cluster 8: Closest min structure is frame 484500 (time: 1938004.0)
# Plot cluster mins in original d-PCA plot
fig, ax = plt.subplots(figsize=(3.2677, 3.2677))
ax = src.pca.plot_PCA(
    reduced_dihedrals,
    "dihedral",
    compound_index,
    d_weights,
    "Energy [kcal/mol]",
    fig,
    ax,
    explained_variance=pca_d.explained_variance_ratio_[:2],
)
# ADD LEGEND ENTRY FOR MD
ax.plot(
    np.array(cluster_min_pca)[:, 0, 0],
    np.array(cluster_min_pca)[:, 0, 1],
    label="Clusters",
    linewidth=0,
    marker="x",
    c='black',
)

ax.legend(["MD","MD Clusters"], framealpha=0.5)

fig.tight_layout()

ax.set_title("Dihedral PCA")
fig.savefig(snakemake.output.cluster_pca, dpi=DPI)
final_figure_axs.append(sg.from_mpl(fig, savefig_kw={"dpi": DPI}))
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/ipykernel_launcher.py:25: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/ipykernel_launcher.py:28: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/svgutils/transform.py:425: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
  fig.savefig(fid, format="svg", **savefig_kw)
/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/IPython/core/pylabtools.py:151: UserWarning: Creating legend with loc="best" can be slow with large amounts of data.
  fig.canvas.print_figure(bytes_io, **kw)
../_images/474e13185acfa1a8_cMD_processed_70_1.png
# Plot cluster mins in shape plot
# Plot
x = mol_shape[:, 0]
y = mol_shape[:, 1]
v = mol_shape_weights
# create a triangulation out of these points
T = tri.Triangulation(x, y)

fig, ax = plt.subplots(figsize=(3.2677, 3.2677))

# plot the contour
# plt.tricontourf(x,y,T.triangles,v)
scat = ax.scatter(
    mol_shape[:, 0],
    mol_shape[:, 1],
    s=0.5,
    c=mol_shape_weights,
    cmap="Spectral_r",
    vmin=0,
    vmax=8,
    rasterized=True,
)

# create the grid
corners = np.array([[1, 1], [0.5, 0.5], [0, 1]])
triangle = tri.Triangulation(corners[:, 0], corners[:, 1])

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
outline = refiner.refine_triangulation(subdiv=0)

# creating the outline
refiner = tri.UniformTriRefiner(triangle)
trimesh = refiner.refine_triangulation(subdiv=2)

# plotting the mesh
ax.triplot(trimesh, "--", color="grey")
ax.triplot(outline, "k-")
ax.set_xlabel(r"$I_{1}/I_{3}$")
ax.set_ylabel("$I_{2}/I_{3}$")
ax.text(0, 1.01, "rod")
ax.text(0.75, 1.01, "sphere")
ax.text(0.52, 0.48, "disk")
ax.set_ylim(0.45, 1.05)  # 0.6
ax.set_xlim(-0.05, 1.08) # 1.13
ax.set_aspect(1.88)  # 1.13 / 0.6
ax.set_title('Shape analysis')

ax.plot(
    np.array(mol_shape_cluster)[:, 0, 0],
    np.array(mol_shape_cluster)[:, 0, 1],
    label="Clusters",
    linewidth=0,
    marker="x",
    c='black',
)

# ax.legend(["MD","MD Clusters"], framealpha=0.5)

colorbar = fig.colorbar(scat, label="Energy [kcal/mol]", fraction=0.046, pad=0.04)

fig.tight_layout()
fig.savefig(snakemake.output.NPR_shape_plot, dpi=DPI)
final_figure_axs.append(sg.from_mpl(fig, savefig_kw={"dpi": DPI}))
../_images/474e13185acfa1a8_cMD_processed_71_0.png
display(Markdown("Show most extreme structures."))
most_spherical = (x + y).argmax()
most_disk = (x - 0.5 + y - 0.5).argmin()
most_rod = (1 - y + x).argmin()
most_occupied_cluster = cluster_index[0]

fig, axs = plt.subplots(1,4, figsize=(6.7323, 3.2677 / 1.8))
for ax, frame_i, title_i in zip(axs.flatten(), [most_spherical, most_disk, most_rod, most_occupied_cluster], ["most spherical", "most disk-like", "most rod-like", "most pop. cluster"]):
    img = src.utils.pymol_image(t[frame_i], t[most_occupied_cluster])
    ax.imshow(img)
    ax.set_title(title_i)
    ax.axis('off')
fig.tight_layout()
# fig.subplots_adjust(wspace=0, hspace=0)
final_figure_axs.append(sg.from_mpl(fig, savefig_kw={"dpi": DPI}))

Show most extreme structures.

../_images/474e13185acfa1a8_cMD_processed_72_1.png
# create a new plot and add a renderer
plot_stride = 10
from bokeh.models import HoverTool

x = np.array(cluster_min_pca)[:, 0, 0]
y = np.array(cluster_min_pca)[:, 0, 1]
percentage = cluster_percentage

data = dict(x=x, y=y, percentage=percentage)


p = figure(
    plot_width=400,
    plot_height=400,
    title="Average cluster structures in PCA space",
    tools="reset",
)
p.dot(
    reduced_dihedrals[::plot_stride, 0],
    reduced_dihedrals[::plot_stride, 1],
    selection_color="firebrick",
    legend_label="simulation frames",
)

hoverable = p.triangle(
    x="x", y="y", source=data, color="firebrick", size=8, legend_label="Clusters"
)
p.add_tools(
    HoverTool(
        tooltips=[("cluster #", "$index"), ("% of total frames", "@percentage{0.0%}")],
        renderers=[hoverable],
    )
)
show(p)
# Interactive viewing of clusters in 3d (needs running jupyter notebook)
cluster_traj = t[cluster_index]
cluster_traj.superpose(
    cluster_traj, 0, atom_indices=cluster_traj.top.select("backbone")
)
view = nv.show_mdtraj(cluster_traj)
view
# save rst files from clusters, account for GaMD equilibration. Does not work with stride.
cluster_full_store = md.load_frame(snakemake.input.traj, cluster_index[0] + frames_start, top=snakemake.input.top)
for idx in cluster_index:
    cluster_full_t = md.load_frame(snakemake.input.traj, idx, top=snakemake.input.top)
    cluster_full_t.save_netcdfrst(
        f"{snakemake.params.rst_dir}rst_{idx}.rst"
    )
    cluster_full_store = cluster_full_store.join(cluster_full_t, discard_overlapping_frames=True)
cluster_full_store.superpose(
    cluster_full_store, 0, atom_indices=cluster_full_t.top.select("backbone")
)
cluster_full_store.save_pdb(snakemake.output.cluster_solvated)
# compute rmsd between clusters
from itertools import combinations

indices = list(combinations(range(cluster_traj.n_frames), 2))

rmsd_backbone = np.zeros((cluster_traj.n_frames, cluster_traj.n_frames))
rmsd = np.zeros((cluster_traj.n_frames, cluster_traj.n_frames))
for i, j in indices:
    rmsd_backbone[i, j] = (
        md.rmsd(
            cluster_traj[i],
            cluster_traj[j],
            atom_indices=cluster_traj.top.select("backbone"),
        )
        * 10
    )
    rmsd[i, j] = md.rmsd(cluster_traj[i], cluster_traj[j]) * 10



sns.set_style("ticks")
fig, axs = plt.subplots(1, 2, figsize=(6.7323, 3.2677))
titles = ["RMSD", "Backbone RMSD"]  # between different clusters
for i, X in enumerate([rmsd, rmsd_backbone]):
    X = X + X.T - np.diag(np.diag(X))
    # get lower diagonal matrix
    X = np.tril(X)
    df = pd.DataFrame(X)
    axs[i] = sns.heatmap(
        df, annot=False, cmap="Greys", ax=axs[i], cbar_kws={"label": r"RMSD in $\AA$"}
    )
    axs[i].set_title(titles[i])
    axs[i].set_xlabel("Cluster no.")
    axs[i].set_ylabel("Cluster no.")
    # ax.invert_xaxis()
fig.tight_layout()
plt.show()
../_images/474e13185acfa1a8_cMD_processed_77_0.png
# compute dihedral angles
*_, omega = src.dihedrals.getDihedrals(cluster_traj)
omega_deg = np.abs(np.degrees(omega))
plt.plot(omega_deg)
plt.title(f"Omega angles of different clusters. Compound {compound_index}")
plt.xlabel("Cluster id")
plt.ylabel("Omega dihedral angle [°]")
plt.show()
../_images/474e13185acfa1a8_cMD_processed_78_0.png
pymol_script = f"""load {snakemake.output.cluster_pdb}
# inspired by: https://gist.github.com/bobbypaton/1cdc4784f3fc8374467bae5eb410edef
cmd.bg_color("white")
cmd.set("ray_opaque_background", "off")
cmd.set("orthoscopic", 0)
cmd.set("transparency", 0.1)
cmd.set("dash_gap", 0)
cmd.set("ray_trace_mode", 1)
cmd.set("ray_texture", 2)
cmd.set("antialias", 3)
cmd.set("ambient", 0.5)
cmd.set("spec_count", 5)
cmd.set("shininess", 50)
cmd.set("specular", 1)
cmd.set("reflect", .1)
cmd.space("cmyk")

#cmd.cartoon("oval")
cmd.show("sticks")
cmd.show("spheres")
cmd.color("gray85","elem C")
cmd.color("gray98","elem H")
cmd.color("slate","elem N")
cmd.color("red","elem O")
cmd.set("stick_radius",0.07)
cmd.set("sphere_scale",0.18)
cmd.set("sphere_scale",0.13, "elem H")
cmd.set("dash_gap",0.01)
cmd.set("dash_radius",0.07)
cmd.set("stick_color","black")
cmd.set("dash_gap",0.01)
cmd.set("dash_radius",0.035)
cmd.hide("nonbonded")
cmd.hide("cartoon")
cmd.hide("lines")
cmd.orient()
cmd.zoom()
cmd.hide("labels")

cmd.mpng("{snakemake.params.cluster_dir}test_", width=1000, height=1000)

"""
pymol_script_file = f"{snakemake.params.cluster_dir}pym.pml"
with open(pymol_script_file, "w") as f:
    f.write(pymol_script)
# Run pymol to plot clusters
!pymol -c $pymol_script_file
 PyMOL(TM) Molecular Graphics System, Version 2.5.0.
 Copyright (c) Schrodinger, LLC.
 All Rights Reserved.
 
    Created by Warren L. DeLano, Ph.D. 
 
    PyMOL is user-supported open-source software.  Although some versions
    are freely available, PyMOL is not in the public domain.
 
    If PyMOL is helpful in your work or study, then please volunteer 
    support for our ongoing efforts to create open and affordable scientific
    software by purchasing a PyMOL Maintenance and/or Support subscription.

    More information can be found at "http://www.pymol.org".
 
    Enter "help" for a list of commands.
    Enter "help <command-name>" for information on a specific command.

 Hit ESC anytime to toggle between text and graphics.

 Detected 24 CPU cores.  Enabled multithreaded rendering.
PyMOL>load data/processed/refactor-test/results/62/H2O/cMD/2000/0/474e13185acfa1a8_clusters/clusters.pdb
 ObjectMolecule: Read crystal symmetry information.
 ObjectMoleculeReadPDBStr: read MODEL 1
 ObjectMoleculeReadPDBStr: read MODEL 2
 ObjectMoleculeReadPDBStr: read MODEL 3
 ObjectMoleculeReadPDBStr: read MODEL 4
 ObjectMoleculeReadPDBStr: read MODEL 5
 ObjectMoleculeReadPDBStr: read MODEL 6
 ObjectMoleculeReadPDBStr: read MODEL 7
 ObjectMoleculeReadPDBStr: read MODEL 8
 ObjectMoleculeReadPDBStr: read MODEL 9
 ObjectMoleculeReadPDBStr: read MODEL 10
 ObjectMoleculeReadPDBStr: read MODEL 11
 ObjectMoleculeReadPDBStr: read MODEL 12
 ObjectMoleculeReadPDBStr: read MODEL 13
 CmdLoad: "" loaded as "clusters".
PyMOL>cmd.bg_color("white")
PyMOL>cmd.set("ray_opaque_background", "off")
PyMOL>cmd.set("orthoscopic", 0)
PyMOL>cmd.set("transparency", 0.1)
PyMOL>cmd.set("dash_gap", 0)
PyMOL>cmd.set("ray_trace_mode", 1)
PyMOL>cmd.set("ray_texture", 2)
PyMOL>cmd.set("antialias", 3)
PyMOL>cmd.set("ambient", 0.5)
PyMOL>cmd.set("spec_count", 5)
PyMOL>cmd.set("shininess", 50)
PyMOL>cmd.set("specular", 1)
PyMOL>cmd.set("reflect", .1)
PyMOL>cmd.space("cmyk")
 Color: loaded table '/biggin/b147/univ4859/research/snakemake_conda/b998fbb8f687250126238eb7f5e2e52c/lib/python3.7/site-packages/pymol/pymol_path/data/pymol/cmyk.png'.
PyMOL>cmd.show("sticks")
PyMOL>cmd.show("spheres")
PyMOL>cmd.color("gray85","elem C")
PyMOL>cmd.color("gray98","elem H")
PyMOL>cmd.color("slate","elem N")
PyMOL>cmd.color("red","elem O")
PyMOL>cmd.set("stick_radius",0.07)
PyMOL>cmd.set("sphere_scale",0.18)
PyMOL>cmd.set("sphere_scale",0.13, "elem H")
PyMOL>cmd.set("dash_gap",0.01)
PyMOL>cmd.set("dash_radius",0.07)
PyMOL>cmd.set("stick_color","black")
PyMOL>cmd.set("dash_gap",0.01)
PyMOL>cmd.set("dash_radius",0.035)
PyMOL>cmd.hide("nonbonded")
PyMOL>cmd.hide("cartoon")
PyMOL>cmd.hide("lines")
PyMOL>cmd.orient()
PyMOL>cmd.zoom()
PyMOL>cmd.hide("labels")
PyMOL>cmd.mpng("data/processed/refactor-test/results/62/H2O/cMD/2000/0/474e13185acfa1a8_clusters/test_", width=1000, height=1000)
 Movie: frame    1 of   13, 1.00 sec. (0:00:12 - 0:00:12 to go).
 Movie: frame    2 of   13, 1.03 sec. (0:00:12 - 0:00:12 to go).
 Movie: frame    3 of   13, 1.00 sec. (0:00:10 - 0:00:11 to go).
 Movie: frame    4 of   13, 1.03 sec. (0:00:10 - 0:00:10 to go).
 Movie: frame    5 of   13, 1.00 sec. (0:00:08 - 0:00:09 to go).
 Movie: frame    6 of   13, 1.01 sec. (0:00:08 - 0:00:08 to go).
 Movie: frame    7 of   13, 1.00 sec. (0:00:07 - 0:00:07 to go).
 Movie: frame    8 of   13, 1.01 sec. (0:00:06 - 0:00:06 to go).
 Movie: frame    9 of   13, 1.00 sec. (0:00:04 - 0:00:05 to go).
 Movie: frame   10 of   13, 0.99 sec. (0:00:03 - 0:00:04 to go).
 Movie: frame   11 of   13, 1.06 sec. (0:00:03 - 0:00:03 to go).
 Movie: frame   12 of   13, 1.00 sec. (0:00:01 - 0:00:02 to go).
 Movie: frame   13 of   13, 1.04 sec. (0:00:01 - 0:00:01 to go).
data = []
cluster_imgs = [
    f"{snakemake.params.cluster_dir}test_{str(i+1).zfill(4)}.png"
    for i in range(cluster_traj.n_frames)
]

[data.append(mpimg.imread(img)) for img in cluster_imgs]
display("Pymol images read")
'Pymol images read'
# get default colors
colors = plt.rcParams["axes.prop_cycle"].by_key()["color"]
# make colors longer if more clusters than colors...
while len(cluster_label_filter) > len(colors):
    colors.extend(colors)
    print("Colors appended..")

fig, axs = plt.subplots(len(cluster_label_filter), 3, sharex="col", squeeze=False)
fig.set_size_inches(12, 3 * len(cluster_label_filter))
# plot cluster images
for i in range(cluster_traj.n_frames):
    # print(f"final {i}")
    axs[i, 0].imshow(data[i])
    axs[i, 0].tick_params(
        axis="both",
        which="both",
        bottom=False,
        top=False,
        left=False,
        labelleft=False,
        labelbottom=False,
    )
    # axs[i,0].tick_params(axis='y', which='both', bottom=False, top=False, labelbottom=False)
# plot corresponding pca's:
for i in range(cluster_traj.n_frames):
    axs[i, 1].scatter(
        reduced_dihedrals[:, 0],
        reduced_dihedrals[:, 1],
        marker=".",
        s=0.5,
        alpha=1,
        c="black",
    )
# add cluster representations
for ii, iii, iiii in zip(
    cluster_min_pca, cluster_label_filter, range(len(cluster_label_filter))
):
    (clus,) = axs[iiii, 1].plot(
        ii[:, 0],
        ii[:, 1],
        marker="^",
        label=f"Cluster {iii}",
        linewidth=0,
        c=colors[iiii],
    )
    # clus.get_color()


# add noe plots
for i, j, k in zip(range(cluster_traj.n_frames), cluster_index, cluster_label_filter):
    NOE = src.noe.read_NOE(snakemake.input.noe)
    if multiple:
        NOE_trans, NOE_cis = NOE
        NOE_cis_dict = NOE_cis.to_dict(orient="index")
        NOE_trans_dict = NOE_trans.to_dict(orient="index")
    else:
        NOE_dict = NOE.to_dict(orient="index")

    current_cluster = cluster_traj[i]
    # print(j)
    if multiple:
        if j in cis:
            # print("cis")
            NOE_dict = NOE_cis_dict
            NOE = NOE_cis
            axs[i, 2].set_title(f"Cluster {k} (cis)")
        else:
            # print("trans!")
            NOE_dict = NOE_trans_dict
            NOE = NOE_trans
            axs[i, 2].set_title(f"Cluster {k} (trans)")
    else:
        axs[i, 2].set_title(f"Cluster {k}")
    NOE["md"], _, _2, NOE_dist, _3 = src.noe.compute_NOE_mdtraj(
        NOE_dict, current_cluster
    )
    # Deal with ambigous NOEs
    NOE = NOE.explode("md")
    # and ambigous/multiple values
    NOE = NOE.explode("NMR exp")
    fig, axs[i, 2] = src.noe.plot_NOE(NOE, fig, axs[i, 2])
fig.tight_layout()
fig.savefig(snakemake.output.cluster_structs)
Colors appended..
../_images/474e13185acfa1a8_cMD_processed_83_1.png
# TODO? cluster NOE statistics....

2.32.6. NOEs#

In the following section, we compute the NOE values for the simulation.

NOE = src.noe.read_NOE(snakemake.input.noe)
NOE_output = {}

2.32.6.1. NOE without reweighting.#

The following NOE plot is computed via \(r^{-6}\) averaging. No reweighting is performed. (so unless the simulation is a conventional MD simulation, the following plot is not a valid comparison to experiment.)

if multiple:
    fig, axs = plt.subplots(2, 1, figsize=(6.7323, 3.2677))
    NOE_trans, NOE_cis = NOE
    NOE_cis_dict = NOE_cis.to_dict(orient="index")
    NOE_trans_dict = NOE_trans.to_dict(orient="index")
    if len(cis) > CIS_TRANS_CUTOFF:
        NOE_cis["md"], _, _2, NOE_dist_cis, _3 = src.noe.compute_NOE_mdtraj(
            NOE_cis_dict, t[cis]
        )

        NOE_output[f"{multi['cis']}"] = NOE_cis.to_dict(orient="index")
        # Deal with ambigous NOEs
        NOE_cis = NOE_cis.explode("md")
        # and ambigous/multiple values
        NOE_cis = NOE_cis.explode("NMR exp")
        fig, axs[1] = src.noe.plot_NOE(NOE_cis, fig, axs[1])
        axs[1].set_title(f"Compound {multi['cis']} (cis)")
    else:
        print("Cis skipped because no frames are cis.")
    if len(trans) > CIS_TRANS_CUTOFF:
        NOE_trans["md"], _, _2, NOE_dist_trans, _3 = src.noe.compute_NOE_mdtraj(
            NOE_trans_dict, t[trans]
        )

        NOE_output[f"{multi['trans']}"] = NOE_trans.to_dict(orient="index")
        # Deal with ambigous NOEs
        NOE_trans = NOE_trans.explode("md")
        # and ambigous/multiple values
        NOE_trans = NOE_trans.explode("NMR exp")

        fig, axs[0] = src.noe.plot_NOE(NOE_trans, fig, axs[0])
        axs[0].set_title(f"Compound {multi['trans']} (trans)")
    else:
        print("Trans skipped because no frames are cis")
else:
    NOE_dict = NOE.to_dict(orient="index")
    NOE["md"], _, _2, NOE_dist, _3 = src.noe.compute_NOE_mdtraj(NOE_dict, t)

    # Save NOE dict
    NOE_output = {f"{compound_index}": NOE.to_dict(orient="index")}
    # Deal with ambigous NOEs
    NOE = NOE.explode("md")
    # and ambigous/multiple values
    NOE = NOE.explode("NMR exp")
    fig, ax = src.noe.plot_NOE(NOE)
    ax.set_title(f"Compound {compound_index}. NOE without reweighting.", y=1.2)
fig.tight_layout()
fig.savefig(snakemake.output.noe_plot, dpi=DPI)
# save as .json file
src.utils.json_dump(snakemake.output.noe_result, NOE_output)
../_images/474e13185acfa1a8_cMD_processed_88_0.png

2.32.6.2. Reweighted NOEs#

The following NOE plot was reweighted via a 1d PMF method.

# 1d PMF reweighted NOEs

NOE_output = {}

if snakemake.params.method != "cMD":
    if multiple:
        fig, axs = plt.subplots(2, 1, figsize=(6.7323, 6.7323))
        NOE_trans, NOE_cis = NOE
        NOE_cis_dict = NOE_cis.to_dict(orient="index")
        NOE_trans_dict = NOE_trans.to_dict(orient="index")
        if len(cis) > CIS_TRANS_CUTOFF:
            (
                NOE_cis["md"],
                NOE_cis["lower"],
                NOE_cis["upper"],
                NOE_dist_cis,
                pmf_plot_cis,
            ) = src.noe.compute_NOE_mdtraj(
                NOE_cis_dict, t[cis],
                reweigh_type=1, slicer=cis, weight_data=weight_data,
            )
            # TODO: this should not give an error!

            NOE_output[f"{multi['cis']}"] = NOE_cis.to_dict(orient="index")

            # Deal with ambigous NOEs
            NOE_cis = NOE_cis.explode(["md", "lower", "upper"])
            # and ambigous/multiple values
            NOE_cis = NOE_cis.explode("NMR exp")
            fig, axs[1] = src.noe.plot_NOE(NOE_cis, fig, axs[1])
            axs[1].set_title(f"Compound {multi['cis']} (cis)")
        else:
            print("Cis skipped because no frames are cis.")
        if len(trans) > CIS_TRANS_CUTOFF:
            (
                NOE_trans["md"],
                NOE_trans["lower"],
                NOE_trans["upper"],
                NOE_dist_trans,
                pmf_plot_trans,
            ) = src.noe.compute_NOE_mdtraj(
                NOE_trans_dict, t[trans],
                reweigh_type=1, slicer=trans, weight_data=weight_data
            )

            NOE_output[f"{multi['trans']}"] = NOE_trans.to_dict(orient="index")
            # Deal with ambigous NOEs
            NOE_trans = NOE_trans.explode(["md", "lower", "upper"])
            # and ambigous/multiple values
            NOE_trans = NOE_trans.explode("NMR exp")
            fig, axs[0] = src.noe.plot_NOE(NOE_trans, fig, axs[0])
            axs[0].set_title(f"Compound {multi['trans']} (trans)")
        else:
            print("Trans skipped because no frames are cis")
        src.utils.json_dump(snakemake.output.noe_result, NOE_output)
        fig.tight_layout()
        fig.savefig(snakemake.output.noe_plot)
    else:
        NOE = src.noe.read_NOE(snakemake.input.noe)
        NOE_dict = NOE.to_dict(orient="index")
        NOE["md"], NOE["lower"], NOE["upper"], _, pmf_plot = src.noe.compute_NOE_mdtraj(
            NOE_dict, t, reweigh_type=1, weight_data=weight_data
        )
        plt.close()
        # Save NOE dict
        NOE_output = {f"{compound_index}": NOE.to_dict(orient="index")}
        # save as .json file
        src.utils.json_dump(snakemake.output.noe_result, NOE_output)

        # Deal with ambigous NOEs
        NOE = NOE.explode(["md", "lower", "upper"])
        # and ambigous/multiple values
        NOE = NOE.explode("NMR exp")
        fig, ax = src.noe.plot_NOE(NOE)
#         ax.set_title(f"Compound {compound_index}. NOE", y=1.5, pad=0)
        fig.tight_layout()
        fig.savefig(snakemake.output.noe_plot, dpi=DPI)
else:
    print("cMD - no reweighted NOEs performed.")
final_figure_axs.append(sg.from_mpl(fig))
pickle_dump(snakemake.output.noe_dist, NOE_dist)
cMD - no reweighted NOEs performed.
display(NOE)
Atom 1 Atom 2 NMR exp lower bound upper bound md
0 (3,) (1,) 3.5 2.3 4.7 2.897961
1 (3,) (16,) 3.5 2.3 4.7 2.810083
2 (3,) (32,) 4.5 2.9 6.1 4.934989
3 (18,) (16,) 3.5 2.3 4.7 2.820634
4 (18,) (32,) 3.5 2.3 4.7 2.819889
... ... ... ... ... ... ...
198 (130, 131) (136, 137) 4.5 2.9 6.1 3.051624
199 (133, 134) (121,) 4.5 2.9 6.1 4.575816
199 (133, 134) (121,) 4.5 2.9 6.1 4.419399
200 (133, 134) (119,) 4.5 2.9 6.1 6.801007
200 (133, 134) (119,) 4.5 2.9 6.1 6.512581

598 rows × 6 columns

# matplotlib.rcParams.update(matplotlib.rcParamsDefault)

if snakemake.params.method != "cMD":
    if not multiple:
        pmf_plot.suptitle("NOE PMF plots")
        pmf_plot.tight_layout()
        pmf_plot.savefig(snakemake.output.noe_pmf)
        fig = pmf_plot
    else:
        # save to image data
        io_cis = io.BytesIO()
        io_trans = io.BytesIO()
        if len(cis) > CIS_TRANS_CUTOFF:
            pmf_plot_cis.savefig(io_cis, format="raw", dpi=pmf_plot_cis.dpi)
        if len(trans) > CIS_TRANS_CUTOFF:
            pmf_plot_trans.savefig(io_trans, format="raw", dpi=pmf_plot_trans.dpi)

        if len(cis) > CIS_TRANS_CUTOFF:
            io_cis.seek(0)
            img_cis = np.reshape(
                np.frombuffer(io_cis.getvalue(), dtype=np.uint8),
                newshape=(
                    int(pmf_plot_cis.bbox.bounds[3]),
                    int(pmf_plot_cis.bbox.bounds[2]),
                    -1,
                ),
            )
            io_cis.close()

        if len(trans) > CIS_TRANS_CUTOFF:
            io_trans.seek(0)
            img_trans = np.reshape(
                np.frombuffer(io_trans.getvalue(), dtype=np.uint8),
                newshape=(
                    int(pmf_plot_trans.bbox.bounds[3]),
                    int(pmf_plot_trans.bbox.bounds[2]),
                    -1,
                ),
            )
            io_trans.close()

        fig, axs = plt.subplots(2, 1)
        fig.set_size_inches(16, 30)
        if len(cis) > CIS_TRANS_CUTOFF:
            axs[0].imshow(img_cis)
            axs[0].axis("off")
            axs[0].set_title("cis")
        if len(trans) > CIS_TRANS_CUTOFF:
            axs[1].imshow(img_trans)
            axs[1].set_title("trans")
            axs[1].axis("off")
        # fig.suptitle('PMF plots. PMF vs. distance')
        fig.tight_layout()
        fig.savefig(snakemake.output.noe_pmf, dpi=DPI)
else:
    fig, ax = plt.subplots()
    ax.text(0.5, 0.5, "not applicable.")
    fig.savefig(snakemake.output.noe_pmf, dpi=DPI)
display(fig)
../_images/474e13185acfa1a8_cMD_processed_92_0.png ../_images/474e13185acfa1a8_cMD_processed_92_1.png

2.32.7. NOE-Statistics#

Following, we compute various statistical metrics to evaluate how the simulated NOEs compare to the experimental ones.

# Compute deviations of experimental NOE values to the MD computed ones
NOE_stats_keys = []
NOE_i = []
NOE_dev = {}

if multiple:
    if len(cis) > CIS_TRANS_CUTOFF:
        NOE_stats_keys.append("cis")
        NOE_i.append(NOE_cis)
    if len(trans) > CIS_TRANS_CUTOFF:
        NOE_stats_keys.append("trans")
        NOE_i.append(NOE_trans)
else:
    NOE_stats_keys.append("single")
    NOE_i.append(NOE)

for k, NOE_d in zip(NOE_stats_keys, NOE_i):
    if (NOE_d["NMR exp"].to_numpy() == 0).all():
        # if all exp values are 0: take middle between upper / lower bound as reference value
        NOE_d["NMR exp"] = (NOE_d["upper bound"] + NOE_d["lower bound"]) * 0.5

    # Remove duplicate values (keep value closest to experimental value)
    NOE_d["dev"] = NOE_d["md"] - np.abs(NOE_d["NMR exp"])
    NOE_d["abs_dev"] = np.abs(NOE_d["md"] - np.abs(NOE_d["NMR exp"]))

    NOE_d = NOE_d.sort_values("abs_dev", ascending=True)
    NOE_d.index = NOE_d.index.astype(int)
    NOE_d = NOE_d[~NOE_d.index.duplicated(keep="first")].sort_index(kind="mergesort")

    NOE_d = NOE_d.dropna()
    NOE_dev[k] = NOE_d
# Compute NOE statistics
NOE_stats = {}

for k in NOE_stats_keys:
    NOE_d = NOE_dev[k]
    NOE_stats_k = pd.DataFrame(columns=["stat", "value", "up", "low"])

    MAE, upper, lower = src.stats.compute_MAE(NOE_d["NMR exp"], NOE_d["md"])
    append = {"stat": "MAE", "value": MAE, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    MSE, upper, lower = src.stats.compute_MSE(NOE_d["dev"])
    append = {"stat": "MSE", "value": MSE, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    RMSD, upper, lower = src.stats.compute_RMSD(NOE_d["NMR exp"], NOE_d["md"])
    append = {"stat": "RMSD", "value": RMSD, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    pearsonr, upper, lower = src.stats.compute_pearsonr(NOE_d["NMR exp"], NOE_d["md"])
    append = {"stat": "pearsonr", "value": pearsonr, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    kendalltau, upper, lower = src.stats.compute_kendalltau(
        NOE_d["NMR exp"], NOE_d["md"]
    )
    append = {"stat": "kendalltau", "value": kendalltau, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    chisq, upper, lower = src.stats.compute_chisquared(NOE_d["NMR exp"], NOE_d["md"])
    append = {"stat": "chisq", "value": chisq, "up": upper, "low": lower}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    fulfilled = src.stats.compute_fulfilled_percentage(NOE_d)
    append = {"stat": "percentage_fulfilled", "value": fulfilled, "up": 0, "low": 0}
    NOE_stats_k = NOE_stats_k.append(append, ignore_index=True)

    NOE_stats[k] = NOE_stats_k
# Compute statistics for most populated cluster
if multiple:
    NOE_stats_keys = ["cis", "trans"]
    differentiation = {"cis": cis, "trans": trans}
else:
    NOE_stats_keys = ["single"]

n_cluster_traj = {}
n_cluster_percentage = {}
n_cluster_index = {}
remover = []
for k in NOE_stats_keys:
    if multiple:
        cluster_in_x = np.in1d(cluster_index, differentiation[k])
        print(cluster_in_x)
        if np.all(cluster_in_x == False):
            # No clusters found for specific cis/trans/other
            remover.append(k)
    else:
        cluster_in_x = np.ones((len(cluster_index)), dtype=bool)
    cluster_in_x = np.arange(0, len(cluster_index))[cluster_in_x]
    n_cluster_traj[k] = cluster_traj[cluster_in_x]
    n_cluster_percentage[k] = np.array(cluster_percentage)[cluster_in_x]
    n_cluster_index[k] = np.array(cluster_index)[cluster_in_x]
cluster_traj = n_cluster_traj
cluster_percentage = n_cluster_percentage
cluster_index = n_cluster_index
[NOE_stats_keys.remove(k) for k in remover]
[]
# Compute statistics for most populated cluster
NOE_dict = {}
NOE = src.noe.read_NOE(snakemake.input.noe)
NOE_n = {}
if multiple:
    NOE_trans, NOE_cis = NOE
    NOE_n["cis"] = NOE_cis
    NOE_n["trans"] = NOE_trans
    NOE_dict["cis"] = NOE_cis.to_dict(orient="index")
    NOE_dict["trans"] = NOE_trans.to_dict(orient="index")
else:
    NOE_dict["single"] = NOE.to_dict(orient="index")
    NOE_n["single"] = NOE


for k in NOE_stats_keys:
    # max. populated cluster
    # NOE = NOE_n.copy()
    max_populated_cluster_idx = np.argmax(cluster_percentage[k])
    max_populated_cluster = cluster_traj[k][max_populated_cluster_idx]
    NOE_n[k]["md"], *_ = src.noe.compute_NOE_mdtraj(NOE_dict[k], max_populated_cluster)
    # Deal with ambigous NOEs
    NOE_n[k] = NOE_n[k].explode("md")
    # and ambigous/multiple values
    NOE_n[k] = NOE_n[k].explode("NMR exp")

    # Remove duplicate values (keep value closest to experimental value)
    NOE_test = NOE_n[k]
    if (NOE_test["NMR exp"].to_numpy() == 0).all():
        # if all exp values are 0: take middle between upper / lower bound as reference value
        NOE_test["NMR exp"] = (NOE_test["upper bound"] + NOE_test["lower bound"]) * 0.5
    NOE_test["dev"] = NOE_test["md"] - np.abs(NOE_test["NMR exp"])
    NOE_test["abs_dev"] = np.abs(NOE_test["md"] - np.abs(NOE_test["NMR exp"]))

    NOE_test = NOE_test.sort_values("abs_dev", ascending=True)
    NOE_test.index = NOE_test.index.astype(int)
    NOE_test = NOE_test[~NOE_test.index.duplicated(keep="first")].sort_index(
        kind="mergesort"
    )

    # drop NaN values:
    NOE_test = NOE_test.dropna()
    # Compute metrics now
    # Compute NOE statistics, since no bootstrap necessary, do a single iteration.. TODO: could clean this up further to pass 0, then just return the value...
    RMSD, *_ = src.stats.compute_RMSD(
        NOE_test["NMR exp"], NOE_test["md"], n_bootstrap=1
    )
    MAE, *_ = src.stats.compute_MAE(NOE_test["NMR exp"], NOE_test["md"], n_bootstrap=1)
    MSE, *_ = src.stats.compute_MSE(NOE_test["dev"], n_bootstrap=1)
    fulfil = src.stats.compute_fulfilled_percentage(NOE_test)
    # insert values
    values = [MAE, MSE, RMSD, None, None, None, fulfil]
    NOE_stats[k].insert(4, "most-populated-1", values)

# If there are no cis/trans clusters, still write a column 'most-populated-1', but fill with NaN
for k in remover:
    values = [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]
    NOE_stats[k].insert(4, "most-populated-1", values)
for k in NOE_stats.keys():
    display(NOE_stats[k])
    # convert df to dict for export
    NOE_stats[k] = NOE_stats[k].to_dict()
# Save
src.utils.json_dump(snakemake.output.noe_stats, NOE_stats)
stat value up low most-populated-1
0 MAE 0.667115 0.732448 0.604567 0.981386
1 MSE -0.279809 -0.174157 0.000000 0.420124
2 RMSD 0.814045 0.886238 0.741551 1.455750
3 pearsonr 0.643348 0.713547 0.563852 NaN
4 kendalltau 0.524450 0.584261 0.455852 NaN
5 chisq 31.120455 36.501093 25.987683 NaN
6 percentage_fulfilled 0.930348 0.000000 0.000000 0.796020
plt.rc('font', size=MEDIUM_SIZE)          # controls default text sizes
plt.rc('axes', titlesize=BIGGER_SIZE)     # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE)    # fontsize of the x and y labels
plt.rc('xtick', labelsize=MEDIUM_SIZE)    # fontsize of the tick labels
plt.rc('ytick', labelsize=MEDIUM_SIZE)    # fontsize of the tick labels
plt.rc('legend', fontsize=MEDIUM_SIZE)    # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure title


if multiple:
    fig, axs = plt.subplots(2, 1)
    if len(cis) > CIS_TRANS_CUTOFF:
        # cis
        axs[0].scatter(NOE_dev["cis"]["NMR exp"], NOE_dev["cis"]["md"])
        axs[0].set_ylabel("MD")
        axs[0].set_xlabel("Experimental NOE value")
        axs[0].axline((1.5, 1.5), slope=1, color="black")
        axs[0].set_title("Experimental vs MD derived NOE values - cis")

    if len(trans) > CIS_TRANS_CUTOFF:
        # trans
        axs[1].scatter(NOE_dev["trans"]["NMR exp"], NOE_dev["trans"]["md"])
        axs[1].set_ylabel("MD")
        axs[1].set_xlabel("Experimental NOE value")
        axs[1].axline((1.5, 1.5), slope=1, color="black")
        axs[1].set_title("Experimental vs MD derived NOE values - trans")
    fig.tight_layout()
    fig.savefig(snakemake.output.noe_stat_plot)
else:
    plt.scatter(NOE_dev["single"]["NMR exp"], NOE_dev["single"]["md"])
    if snakemake.params.method != "cMD":
        plt.scatter(
            NOE_dev["single"]["NMR exp"], NOE_dev["single"]["upper"], marker="_"
        )
        plt.scatter(
            NOE_dev["single"]["NMR exp"], NOE_dev["single"]["lower"], marker="_"
        )
    plt.ylabel("MD")
    plt.xlabel("Experimental NOE value")
    plt.axline((1.5, 1.5), slope=1, color="black")
    plt.title("Experimental vs MD derived NOE values")
    plt.tight_layout()
    plt.savefig(snakemake.output.noe_stat_plot)
    
../_images/474e13185acfa1a8_cMD_processed_99_0.png
# is the mean deviation significantly different than 0? if pvalue < 5% -> yes! We want: no! (does not deviate from exp. values)
if multiple:
    if len(cis) > CIS_TRANS_CUTOFF:
        print(stats.ttest_1samp(NOE_dev["cis"]["dev"], 0.0))
    if len(trans) > CIS_TRANS_CUTOFF:
        print(stats.ttest_1samp(NOE_dev["trans"]["dev"], 0.0))
else:
    print(stats.ttest_1samp(NOE_dev["single"]["dev"], 0.0))
Ttest_1sampResult(statistic=-5.176441884874415, pvalue=5.488100984451762e-07)
if multiple:
    if len(cis) > CIS_TRANS_CUTOFF:
        print(stats.describe(NOE_dev["cis"]["dev"]))
    if len(trans) > CIS_TRANS_CUTOFF:
        print(stats.describe(NOE_dev["trans"]["dev"]))
else:
    print(stats.describe(NOE_dev["single"]["dev"]))
DescribeResult(nobs=201, minmax=(-1.944293874617384, 2.012580514857449), mean=-0.27980938408283523, variance=0.5872971904124863, skewness=0.3879906298622206, kurtosis=0.12896484893215998)
# Make overview figure
plot1 = final_figure_axs[0].getroot()
plot2 = final_figure_axs[1].getroot()
plot3 = final_figure_axs[2].getroot()
plot4 = final_figure_axs[3].getroot()
plot5 = final_figure_axs[4].getroot()
if multiple:
#     # TODO: fix this!
#         sc.Figure(
#         "4039",
#         "5048",
#         sc.Panel(plot3, sc.Text("A", 0, 0, size=16, weight='bold')),
#         sc.Panel(
#             plot2,
#             sc.Text("B", "8.5cm", "0cm", size=16),
#         ).move(0,200),
#         sc.Panel(plot4, sc.Text("C", 25, 20, size=16, weight='bold')),
#         # sc.Panel(plot4, sc.Text("D", 25, 20, size=20, weight='bold')).scale(0.8).move(-200,0),
#     ).tile(2, 2).save(snakemake.output.overview_plot)
    sc.Figure(
        "4039",
        "7068", # 5048
        sc.Panel(plot2, sc.Text("A", 25, 20, size=16, weight='bold').move(-12,0)).scale(8),
        sc.Panel(plot3, sc.Text("B", 25, 20, size=16, weight='bold').move(-12,0)).scale(8),
        sc.Panel(plot4, sc.Text("C", 25, 20, size=16, weight='bold').move(-12,-24)).scale(8).move(0, -300),
        sc.Panel(sc.Text("2")),
        sc.Panel(plot5, sc.Text("D", 25, 20, size=16, weight='bold').move(-12,0)).scale(8).move(0, -1550),
        # sc.Panel(plot1, sc.Text("D", 25, 0, size=16, weight='bold')),
    ).tile(2, 3).save(snakemake.output.overview_plot)
else:
    sc.Figure(
        "4039",
        "5048", # 4039
        sc.Panel(plot2, sc.Text("A", 25, 20, size=16, weight='bold').move(-12,0)).scale(8),
        sc.Panel(plot3, sc.Text("B", 25, 20, size=16, weight='bold').move(-12,0)).scale(8),
        sc.Panel(plot4, sc.Text("C", 25, 20, size=16, weight='bold').move(-12,-24)).scale(8).move(0, 350),
        sc.Panel(sc.Text("2")),
        sc.Panel(plot5, sc.Text("D", 25, 20, size=16, weight='bold').move(-12,0)).scale(8).move(0, -250),
        # sc.Panel(plot1, sc.Text("D", 25, 0, size=16, weight='bold')),
    ).tile(2, 3).save(snakemake.output.overview_plot)
src.utils.show_svg(snakemake.output.overview_plot)
../_images/474e13185acfa1a8_cMD_processed_104_0.svg
print("Done")
Done